Answer:
Low-temperature blackbody
Explanation:
There are 3 types of blackbody temperatures.
Low-temperature blackbody
High temperature extended area blackbody
High-temperature cavity blackbody
A Low-temperature blackbody is a type of black body radiation that has the range of -40° C to 175° C, typically between 233 K and 448 K. A perfect fit for the temperature range mentioned in the question, "a few hundred Kelvin". Therefore, it's the kind of blackbody temperature that the object would emit.
The molecule they all come from is water molecule
A wire has a diameter of 2. 0 mm and a length of 32 m and is found to have a resistance of 1. 8 ω having a resistivity of the wire
Resistivity, which is frequently denoted by the letter rho, is mathematically equal to the resistance R of a specimen, such as a wire, multiplied by its cross-sectional area A, and divided by its length l; it is represented by the symbol RA/l. The ohm is the unit of resistance.
A conductor's resistance (R) is inversely proportional to its length (L), with R L. We now know the variables that affect resistivity. Ohm's law and resistors have also been covered in relation to parallel formulae.
The resistance provided by the substance per unit length for unit cross-section is referred to as a conductor's resistivity. Temperature and pressure affect the material's resistivity, which is a property. When compared to the resistivity of insulators, conductors have a low resistivity.
To learn more about resistivity please visit -
brainly.com/question/13612460
#SPJ4
It is the 'crest' part that the green arrow is identifying.
Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.