<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years
The most appropriate answer is C !!
Answer:
I got 3/8, hope this helps.
Explanation:
Answer:
John Dalton
Explanation:
John Dalton in 1808 suggested that all matter consists of tiny particles called atoms and that the atoms of a specific element are identical.
He postulated the Dalton's atomic theory which has the following important parts;
- All matters consists of indivisible particles called atoms
- Atoms of the same element are similar and are different from atoms of other elements.
- Atoms can neither be created nor destroyed.
- Atoms combine in simple whole ratios to form compounds.
Density= mass/ volume
So density = 99/10= 9.9g/cm^3
Hope this helps!! xx