Answer:
8o/58*6*10power23 gives u the answer. molecules=moles*avagadrono
moles=weight/molecular wt
hope u understandmark me as branliest
Answer:
2 moles NH3 = 1 mole of N2
3 moles of H2 = 1 mole of N2
3 moles of H2 = 2 moles of NH3
Explanation:
The balanced equation for the reaction is given below:
N2 + 3H2 —> 2NH3
From the balanced equation above,
1 mole of N2 reacted with 3 moles of H2 to produce 2 moles of NH3.
Thus, we can say that:
1 mole of N2 = 3 moles of H2
1 mole of N2 = 2 moles of NH3
3 moles of H2 = 2 moles of NH3
Thus, considering the options given above, the right answers to the question are:
2 moles NH3 = 1 mole of N2
3 moles of H2 = 1 mole of N2
3 moles of H2 = 2 moles of NH3
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
According to Grahams law the rate of effusion of a gas is inversely proportional to the square root of it's molecular weight. The rate of diffusion is the measure of rate at which two gases mix. From this law we can say that for the two gases carbon monoxide and carbon dioxide, the rate of effusion of carbon monoxide is greater than that of carbon dioxide, this is because carbon monoxide is lighter (28 g) compared to carbon dioxide (44 g).
Hey there!
C₅H₅ + Fe → Fe(C₅H₅)₂
Put a coefficient of 2 in front of C₅H₅ on the left side because there is a subscript of 2 after C₅H₅ in parenthesis on the right.
2C₅H₅ + Fe → Fe(C₅H₅)₂
Fe (iron) is already balanced since there is one on each side, so we don't need to change anything for that.
This is a synthesis reaction because two reactants, C₅H₅ and Fe, are yielding a single product, Fe(C₅H₅)₂.
Hope this helps!