1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
10

How do the structures of the respiratory system work together to supply my body with oxygen and get rid of carbon dioxide? do no

t look it up
Physics
1 answer:
AlexFokin [52]3 years ago
5 0

A

Explanation:

I hate tiny links OMLJDJDJDJSJDJJDJDJ

You might be interested in
Piano tuners tune pianos by listening to the beats between the harmonics of two different strings. When properly tuned, the note
Sophie [7]

(a) 2 Hz

The frequency of the nth-harmonic is given by

f_n = n f_1

where

f_1 is the fundamental frequency

Therefore, the frequency of the third harmonic of the A (f_1 = 440 Hz) is

f_3 = 3 \cdot f_1 = 3 \cdot 440 Hz =1320 Hz

while the frequency of the second harmonic of the E (f_1 = 659 Hz) is

f_2 = 2 \cdot f_1 = 2 \cdot 659 Hz =1318 Hz

So the frequency difference is

\Delta f = 1320 Hz - 1318 Hz = 2 Hz

(b) 2 Hz

The beat frequency between two harmonics of different frequencies f, f' is given by

f_B = |f'-f|

In this case, when the strings are properly tuned, we have

- Frequency of the 3rd harmonic of A-note: 1320 Hz

- Frequency of the 2nd harmonic of E-note: 1318 Hz

So, the beat frequency should be (if the strings are properly tuned)

f_B = |1320 Hz - 1318 Hz|=2 Hz

(c) 1324 Hz

The fundamental frequency on a string is proportional to the square root of the tension in the string:

f_1 \propto \sqrt{T}

this means that by tightening the string (increasing the tension), will increase the fundamental frequency also*, and therefore will increase also the frequency of the 2nd harmonic.

In this situation, the beat frequency is 4 Hz (four beats per second):

f_B = 4 Hz

And since the beat frequency is equal to the absolute value of the difference between the 3rd harmonic of the A-note and the 2nd harmonic of the E-note,

f_B = |f_3-f_2|

and f_3 = 1320 Hz, we have two possible solutions for f_2:

f_2 = f_3 - f_B = 1320 Hz - 4 Hz = 1316 Hz\\f_2 = f_3 + f_B = 1320 Hz + 4 Hz = 1324 Hz

However, we said that increasing the tension will increase also the frequency of the harmonics (*), therefore the correct frequency in this case will be

1324 Hz

8 0
2 years ago
A block of wood is floating in water; it is depressed slightly and then released to oscillate up and down. Assume that the top a
Marysya12 [62]

Explanation:

Equilibrium position in y direction:

W = Fb (Weight of the block is equal to buoyant force)

m*g = V*p*g

V under water = A*h

hence,

m = A*h*p

Using Newton 2nd Law

-m*\frac{d^2y}{dt^2} = Fb - W\\\\-m*\frac{d^2y}{dt^2} = p*g*(h+y)*A - A*h*p*g\\\\-A*h*p*\frac{d^2y}{dt^2} = y *p*A*g\\\\\frac{d^2y}{dt^2} + \frac{g}{h} * y =0

Hence, T time period

T = 2*pi*sqrt ( h / g )

4 0
3 years ago
If a plane is moving at a constant velocity what is happening to the acceleration?
quester [9]
The plane is not accelerating.

Hope this helps!
4 0
2 years ago
Read 2 more answers
A 6 N and a 10 N force act on an object. The moment arm of the 6 N force is 0.2 m. If the 10 N force produces five times the tor
Levart [38]

Answer:

The moment arm is 0.6 m

Explanation:

Given that,

First force F_{1}=6\ N

Second force F_{2}=10\ N

Distance r = 0.2 m

We need to calculate the moment arm

Using formula of torque

\tau=Force\times lever\ arm

So, Here,

\tau_{2}=5 \tau_{1}

We know that,

The torque is the product of the force and distance.

Put the value of torque in the equation

F_{2}\times d_{2}=5\times F_{1}\times r_{1}

r_{2}=\dfrac{5\times F_{1}\times r_{1}}{F_{2}}

Where, F_{1}=First force

F_{1}=First force

F_{2}=Second force

r_{1}= distance

Put the value into the formula

r_{2}=\dfrac{5\times6\times0.2}{10}

r_{2}=0.6\ m

Hence, The moment arm is 0.6 m

6 0
3 years ago
Bella makes the 2.5m distance to her food bowl in 9.1 seconds. What is her average velocity?
e-lub [12.9K]
  • Distance=2.5m
  • Time=9.1s

Average Velocity=Total Distance/Total Time

\\ \sf\longmapsto \dfrac{2.5}{9.1}

\\ \sf\longmapsto 0.3m/s

7 0
2 years ago
Other questions:
  • Help please I really need help in this one
    13·1 answer
  • how much force (in N) is exerted on one side of an 16.2 cm by 22.9 cm sheet of paper by the atmosphere
    10·1 answer
  • A constant force of 40N acting on a body initially at rest gives it an acceleration of 0.1m/s inverse 2 for 4s .calculate the wo
    13·1 answer
  • What is the function of an electrical motor in terms of electric power and motion?
    12·1 answer
  • What distance does the spring need to be compressed so that the block will just barely make it past the rough patch when release
    12·1 answer
  • Which practice is an unsustainable way of managing resources?<br> Please help
    12·1 answer
  • Hurry pls I need help
    8·1 answer
  • What happens when an electrically charged balloon is placed close to an uncharged soda can?
    8·2 answers
  • 7. How much time does it take a person to walk 8
    13·1 answer
  • Determine the speed at which the medicine leaves the needle
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!