Answer:
The force is 
Explanation:
The diagram for this question is shown on the first uploaded image
At Equilibrium the summation of the of force on the vertical axis is zero
i.e 
=> 
is the is the speed of water at the nozzle which can be mathematically evaluated as

substituting
for R and
for


is the is the speed of water at the pipe which can be mathematically evaluated as

substituting
for R and
for


is he density of water with value 
Substituting values into the equation above


At Equilibrium the summation of the of force on the horizontal axis is zero
i.e 
=> 
Since The speed at both A and B nozzle are the same then
remains the same
Substituting values

=> 
Hence the force acting on the flange bolts required to hold the nozzle in place is



Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J
Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Answer:
Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
Explanation:
To find the coordinates of event in system K ,we have to use inverse Lorentz transformation
So

for t

Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
Answer:
Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field to the point where an ionized gaseous substance becomes increasingly electrically conductive.