The answer would be B. One region of the molecule has a small negative charge while another region has a small positive charge. However usually in polar bonds, charges or bond between the atoms are unequal (as opposed to having small equal charges).
<span>To find the mass of 3.00 moles of magnesium chloride (MgCl2), first record the atomic mass of magnesium (Mg) and chloride (Cl), which are both listed on the periodic table as follows:
Mg=24 g/mole
Cl=38 g/mole
Now, double the Cl mass since there are 2 Cl moles in MgCl2 and then add it to the Mg mass like so:
(38 g/mole*2 moles)+24 g/mole=100 g/mole
Finally, to calculate the mass of 3.00 moles of MgCl2, convert the combined atomic mass to grams as follows:
3.00 moles * 100 g/mole = 300 g</span>
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
Second row:
2. Rate value:
3.Third row:
4. Fourth row:
These are called subscript number.
That is the number below the normal line of test are called subscript number.
This number indicate the indicate the number of atoms of the element present in the chemical formula.
In both of these C₆H₁₂O₆ and H₂O, the number written below the line of the text are called subscript numbers.