1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
12

What is one key physical difference between transition metals and poor metals?

Physics
1 answer:
adoni [48]3 years ago
5 0

Answer:

HARDNESS

Explanation:

One key physical difference between transition metals and poor metals is their "" Hardness"" which is

the ability of a material to resist deformation. The test for hardness can be determined by a standard test which is the measurement of surface resistance to indentation. hardness tests are defined the shape and also type of indent.

The poor metals are also referred to as post transition metals. They are elements that are found at the right of the transition metals,they are located in the p-block,Their properties is as a result of their low melting and boiling point compare to other metals.They have high electronegativity and conductivity but softer texture compare to other metals.They are very soft more than the transition metals, but they cannot be cannot be classified as metalloids.

Poor metals includes elements in the periodic table such as; aluminium, gallium, indium, thallium, tin, lead, bismuth, and polonium.

You might be interested in
Two students are on a balcony 19.1 m above the street. One student throws a ball, b1, vertically downward at 13.9 m/s. At the sa
tester [92]

Answer:

Part a)

t = 2.83 s

Part b)

Ball thrown downwards =v_f = 23.8 m/s

Ball thrown upwards =v_f = 23.8 m/s

Part c)

d = 22.24 m

Explanation:

Part a)

Since both the balls are projected with same speed in opposite directions

So here the time difference is the time for which the ball projected upward will move up and come back at the same point of projection

Afterwards the motion will be same as the first ball which is projected downwards

so here the time difference is given as

\Delta y = 0 = v_y t + \frac{1}{2}at^2

0 = 13.9 t - \frac{1}{2}(9.81) t^2

t = 2.83 s

Part b)

Since the displacement in y direction for two balls is same as well as the the initial speed is also same so final speed is also same for both the balls

so it is given as

v_f^2 - v_i^2 = 2 a \Delta y

v_f^2 - (13.9)^2 = (2)(-9.81)(-19.1)

v_f^2 = 567.9

v_f = 23.8 m/s

Part c)

Relative speed of two balls is given as

v_{12} = v_1 - v_2

v_{12} = (13.9) - (-13.9) = 27.8 m/s

now the distance between two balls in 0.8 s is given as

d = v_{12} t

d = 27.8 \times 0.8

d = 22.24 m

7 0
3 years ago
Evan drew a diagram to illustrate radiation.
Vesna [10]

The correct answer is:

D. Electromagnetic waves.

The arrows represent electromagnetic waves.

|Huntrw6|

8 0
3 years ago
A steel wire of length 31.0 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stre
Brut [27]

Answer:

The time taken is  t =  0.356 \ s

Explanation:

From the question we are told that

  The length of steel the wire is  l_1  = 31.0 \ m

   The  length of the  copper wire is  l_2  = 17.0 \ m

    The  diameter of the wire is  d =  1.00 \ m  =  1.0 *10^{-3} \ m

     The  tension is  T  =  122 \ N

     

The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

              t  =  t_s  +  t_c

Where  t_s is the time taken to transverse the steel wire which is mathematically represented as

         t_s  = l_1 *  [ \sqrt{ \frac{\rho * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_s is the density of steel with a value  \rho_s  =  8920 \ kg/m^3

   So

      t_s  = 31 *  [ \sqrt{ \frac{8920 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_s  = 0.235 \ s

 And

        t_c is the time taken to transverse the copper wire which is mathematically represented as

      t_c  = l_2 *  [ \sqrt{ \frac{\rho_c * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_c is the density of steel with a value  \rho_s  =  7860 \ kg/m^3

 So

      t_c  = 17 *  [ \sqrt{ \frac{7860 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_c  =0.121

So  

   t  = t_c  + t_s

    t =  0.121 + 0.235

    t =  0.356 \ s

4 0
3 years ago
What force is needed to accelerate an object 5 m/s2 if the object has a mass of 10 kg?
Helga [31]
We know, F = m * a
F = 10 * 5
F = 50 N

In short, Your Answer would be 50 Newtons

Hope this helps!
5 0
3 years ago
Koala bears can eat only certain kind of Australian eucalyptus leaves.koalas are considered
DaniilM [7]
<em>Hello there, and thank you for asking your question here on brainly.

<u>Answer: Koala bears are considered herbivores, or as in the scientific name, arboreal herbivorous marsupial, marsupial because it also carries it's babies around in a pouch. Koala bears are also native to Australia, which eucalyptus leaves are also native to.
</u>
Hope this helped you! ♥</em>
3 0
3 years ago
Other questions:
  • If an atom had 35 protons in the nucleus how many electrons will it have orbiting the nucleus ?
    10·2 answers
  • What are the different type of insulators in a torch?
    12·1 answer
  • A farmer clears an area of land, and erosion washes away much of the topsoil. The
    6·1 answer
  • What is the amplitude of this wave? 13 cm<br> 21cm<br> 26 cm<br>42 cm​
    12·2 answers
  • The highest point of a transverse wave is called the _____.
    6·2 answers
  • Which of these is a unit of heat? <br> a. joule <br> b. degree celsius <br> c. kelvin <br> d. tesla
    7·1 answer
  • Thorium ____ has 90 protons and 137 neutrons.
    7·1 answer
  • What is the drawback to using superconductors?
    11·1 answer
  • What is the target heart rate for a 24 year old?
    10·2 answers
  • A baseball is thrown at a 28° angle and an initial velocity of 70 m/s. Assume no air resistance. What is the vertical component
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!