1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
12

What is one key physical difference between transition metals and poor metals?

Physics
1 answer:
adoni [48]3 years ago
5 0

Answer:

HARDNESS

Explanation:

One key physical difference between transition metals and poor metals is their "" Hardness"" which is

the ability of a material to resist deformation. The test for hardness can be determined by a standard test which is the measurement of surface resistance to indentation. hardness tests are defined the shape and also type of indent.

The poor metals are also referred to as post transition metals. They are elements that are found at the right of the transition metals,they are located in the p-block,Their properties is as a result of their low melting and boiling point compare to other metals.They have high electronegativity and conductivity but softer texture compare to other metals.They are very soft more than the transition metals, but they cannot be cannot be classified as metalloids.

Poor metals includes elements in the periodic table such as; aluminium, gallium, indium, thallium, tin, lead, bismuth, and polonium.

You might be interested in
Tennis balls traveling at greater than 100 mph routinely bounce off tennis rackets. At some sufficiently high speed, however, th
Kipish [7]

Answer:

Probability of tunneling is 10^{- 1.17\times 10^{32}}

Solution:

As per the question:

Velocity of the tennis ball, v = 120 mph = 54 m/s

Mass of the tennis ball, m = 100 g = 0.1 kg

Thickness of the tennis ball, t = 2.0 mm = 2.0\times 10^{- 3}\ m

Max velocity of the tennis ball, v_{m} = 200\ mph = 89 m/s

Now,

The maximum kinetic energy of the tennis ball is given by:

KE = \frac{1}{2}mv_{m}^{2} = \frac{1}{2}\times 0.1\times 89^{2} = 396.05\ J

Kinetic energy of the tennis ball, KE' = \frac{1}{2}mv^{2} = 0.5\times 0.1\times 54^{2} = 154.8\ m/s

Now, the distance the ball can penetrate to is given by:

\eta = \frac{\bar{h}}{\sqrt{2m(KE - KE')}}

\bar{h} = \frac{h}{2\pi} = \frac{6.626\times 10^{- 34}}{2\pi} = 1.0545\times 10^{- 34}\ Js

Thus

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = 1.52\times 10^{-35}\ m

Now,

We can calculate the tunneling probability as:

P(t) = e^{\frac{- 2t}{\eta}}

P(t) = e^{\frac{- 2\times 2.0\times 10^{- 3}}{1.52\times 10^{-35}}} = e^{-2.63\times 10^{32}}

P(t) = e^{-2.63\times 10^{32}}

Taking log on both the sides:

logP(t) = -2.63\times 10^{32} loge

P(t) = 10^{- 1.17\times 10^{32}}

6 0
3 years ago
Which statement correctly describes the relationship between frequency and wavelength?
Len [333]
The relationship between the frequency and wavelength of a wave is given by the equation:

v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency. 

If we divide the equation by f we get:

λ=v/f

From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases. 

So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.  
3 0
3 years ago
Read 2 more answers
If it is fixed at C and subjected to the horizontal 60-lblb force acting on the handle of the pipe wrench at its end, determine
pickupchik [31]

Answer:

τ = 132.773 lb/in² = 132.773 psi

Explanation:

b = 12 in

F = 60 lb

D = 3.90 in (outer diameter)  ⇒ R = D/2 = 3.90 in/2 = 1.95 in

d = 3.65 in (inner diameter)  ⇒ r = d/2 = 3.65 in/2 = 1.825 in

We can see the pic shown in order to understand the question.

Then we get

Mt = b*F*Sin 30°

⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in

Now we find ωt as follows

ωt = π*(R⁴ - r⁴)/(2R)

⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)

⇒ ωt = 2.7114 in³

then the principal stresses in the pipe at point A is

τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)

⇒ τ = 132.773 lb/in² = 132.773 psi

7 0
4 years ago
Which best describes how combustion works?
jekas [21]
The answer is A, it breaks down and releases thermal energy. 
3 0
3 years ago
Read 2 more answers
If a cat can exert 2000N Of Force to move a trailer 50m is 20 seconds how much power did the car use ?
inessss [21]

им putins брат, почему вы обманываете нашу систему образования, Это теперь запрещено в России.

8 0
3 years ago
Other questions:
  • A 15-kilogram cart is at rest on a horizontal
    11·1 answer
  • Calculate the force constant (in N/m) of its plunger's spring if you must compress it 0.160 m to drive the 0.0540 kg plunger to
    11·1 answer
  • Astrology is considered a science because it is grounded in scientific research.<br>  
    5·2 answers
  • The truck is described as travelling at 30mph to the west. The quantity described here is a(n)
    8·1 answer
  • True or false: When an object becomes polarized, it acquires a charge and becomes a charged object.​
    7·1 answer
  • Laws are statements that explain an observation without trying to explain why or how it occurs. Often times they are mathematica
    7·1 answer
  • Mendeleev arranged the known chemical elements in a table according to increasing
    8·1 answer
  • A direct result of european exploration of north america during the 1500s and early 1600s was the
    13·1 answer
  • the 200 g baseball has a horizontal velocity of 30 m/s when it is struck by the bat, B, weighing 900 g, moving at 47 m/s. during
    9·1 answer
  • A skater can spin faster by pulling her arms closer to her body or spin slower by spreading her arms out from her body. This is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!