Sodium/natrium is a metal from first column group so it should have one 1+ charge. Phosphate ion has 3- charge. That is why there 3 natrium ion for 1 phosphate ion when this molecule is dissolved in water. The ion formula would be:
(Na)

(PO

) ==> 3 Na

+ PO
The element is Sr (strontium)
strontium is in atomic number 38 in the periodic table. Strontium has 2.8.8.8.8.2
it loses two electrons to become stable hence it has a charge of 2+. when strontium loses two electron it form ion with 36 electrons
Hey there!:
Given the mass of PbCl(OH) :
0.135 Kg = 0.135 Kg*(1000g / 1Kg) = 135 g
Molecular mass of PbCl(OH) = 207+35.5+16+1 = 259.5 g / mol
Atomic mass of Pb = 207 g/mol
Hence mass of Pb in 135 g PbCl(OH) :
(207 g Pb / 259.5 g PbClOH) * 135g PbClOH =
0.79768 * 135 => 107.68 g of Pb
For Pb2Cl2CO3 :
Given the mass of Pb2Cl2CO3 :
0.135 Kg = 0.135 Kgx(1000g / 1Kg) = 135 g
Molecular mass of Pb2Cl2CO3 = 2*207+2*35.5+12+3*16 = 545 g / mol
Mass of Pb present in 1 mol (=545 g / mol) of Pb2Cl2CO3 = 2*207 = 414 g
Hence mass of Pb in 135 g Pb2Cl2CO3:
(414 g Pb / 545 g PbClOH) * 135g PbClOH =
0.75963 * 135 => 102.55 g of Pb2Cl2CO3
Hope that helps!
Answer:
You need 8,324 g of CaCl₂ yo make this solution
Explanation:
Molarity is a way to express concentration in a solution, in units of moles of solute per liter of solution.
To know the grams of CaCl₂ it is necessary to know, first, the moles of this substance with the desired volume and concentration , thus:
0,1500 L ×
= 0,075 CaCl₂ moles
Now, with the molar mass of CaCl₂ you will obtain the necessary grams, thus:
0,075 CaCl₂ moles ×
= 8,324 g of CaCl₂
So, you need <em>8,324 g of CaCl₂</em> to make 150,0 mL of a 0,500M solution
I hope it helps!
Answer:J.J. Thomson, he was using a high-vacuum cathode-ray tube
Explanation:(I Googled it)