In decomposition, two or more reactant combine to form one product only.
The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
We will use this formlula: Mass in grams = Number of moles x Molecular mass of 1 mole.
Since, we know the avagadro number is 6.02 x 10²³, we only have two unknown values left which are the molecular mass of CH3OH and its mole.
Molecular Mass: C = 12, H= 1, O = 16, since we have C=12, H4 = 4, O = 16, we will add them up: 12 + 4 + 16 =32
We know that one mole of anything = 6.02 x 10²³.
So we will use this formula to find the mole of methanol: Number of moles = Number of molecules / Avagadro number
Number of moles of CH3OH = (9.79 x 10^24)/6.02 x 10²³) = 16.263 moles.
Now we know that the molecular mass = 32 and the mole is = 16.263.
Now we can find its mass by using this formula: <span>Mass in grams = Number of moles x Molecular mass of 1 mole.
</span>
Mass in grams = 16.263 x 32 = 520g