The answer is (2). If you recall Rutherford's gold foil experiment, remember that a stream of positively charged alpha particles were shot at a gold foil in the center of a detector ring. The important observation was that although most of the particles passed straight through the foil without being deflected, a tiny fraction of the alpha particles were deflected off the axis of the shot, and some were even deflected almost back to the point from which they were shot. The fact that some of the alpha particles were deflected indicated a positive charge (because same charges repel), and the fact that only a small fraction of the particles were deflected indicated that the positive charge was concentrated in a small area, probably residing at the center of the atom.
The net ionic equation of the reaction could be determined by cancelling out the like ions between both sides of the reaction. These ions are called spectator ions. They are called as such because they do not actively participate in the reaction. The spectator ions are Na+ and Cl-. When you cancel those, the equation would become letter D.
Answer:
<h2>0.15 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities.
From the question we have

We have the final answer as
<h3>0.15 moles</h3>
Hope this helps you
It is (CI) bromine
because, <span>Halogen element, any of the six nonmetallic elements that constitute Group 17 (Group VIIa) of the periodic table. The halogen elements are </span>fluorine (F)<span>, </span>chlorine (Cl), bromine (Br<span>), iodine (I), astatine (At), and tennessine (Ts).</span>
I believe the answer is 1-Water :)