Answer:
Δt = 5.85 s
Explanation:
For this exercise let's use Faraday's Law
emf =
- d fi / dt
= B. A
\phi = B A cos θ
The bold are vectors. It indicates that the area of the body is A = 0.046 m², the magnetic field B = 1.4 T, also iindicate that the normal to the area is parallel to the field, therefore the angle θ = 0 and cos 0 =1.
suppose a linear change of the magnetic field
emf = - A 
Dt = - A 
the final field before a fault is zero
let's calculate
Δt = - 0.046 (0- 1.4) / 0.011
Δt = 5.85 s
The answer is Strontium(Sr)
Answer:Same magnitude
Explanation:
When ball is dropped from shoulder height h then velocity at the bottom is given by

if it makes elastic collision then it will acquire the same velocity and riser up to the same height
If m is the mass of ball then impulse imparted is given by


Thus impulse imparted by gravity and Floor will have same magnitude of impulse but direction will be opposite to each other.