The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4
Answer:
I Will say the Answer is A
Explanation:
Answer:
aw why? are you deleting the app for school?
Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
Answer:
Parking orbit is -
a. The path along which a plane travels
b. Orbit of a polar satellite
c. Orbit of geostationary satellite
d. Orbit of the earth.
Explanation: