Answer:
The correct answer is 32.2 grams.
Explanation:
Based on the given information, the enthalpy of formation for aluminum oxide is 1676 kJ/mol. It signifies towards the energy that is required to generate aluminum and oxygen, and both of these exhibit zero enthalpy of formation. Therefore, the ΔHreaction is the required energy to generate 2 moles of aluminum. Thus, the energy needed for the formation of single mole of aluminum is,
ΔHrxn = 1676/2 = 838 kJ/mol
Q or the energy input mentioned in the given case is 1000 kJ. Therefore, the number of moles of Al generated is,
(1000 kJ) / (838 kJ/Al mole) = 1.19 moles of Aluminum
The grams of aluminum produced can be obtained by using the formula,
mass = moles * molecular mass
= 1.19 * 26.98
= 32.2 grams.
Copper II oxide is a compound.
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.
The grams of carbon dioxide that are in 35.6 liters of Co2 is calculates as below
calculate the number of moles of CO2
At STP 1 mole = 22.4 L
what about 35.6 liters
= 1mole x 35.6 liters/ 22.4 liters = 1.589 moles
mass of CO2 = moles x molar mass of CO2
= 1.589 mol x 44 g/mol = 69.92 grams