Answer:
Their final relative velocity is 0.190 m/s
Explanation:
The relative velocity of the satellites, v = 0.190 m/s
The mass of the first satellite, m₁ = 4.00 × 10³ kg
The mass of the second satellite, m₂ = 7.50 × 10³ kg
Given that the satellites have elastic collision, we have;
![v_2 = \dfrac{2 \cdot m_1}{m_1 + m_2} \cdot u_1 - \dfrac{m_1 - m_2}{m_1 + m_2} \cdot u_2](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cdfrac%7B2%20%5Ccdot%20m_1%7D%7Bm_1%20%2B%20m_2%7D%20%5Ccdot%20u_1%20-%20%5Cdfrac%7Bm_1%20-%20m_2%7D%7Bm_1%20%2B%20m_2%7D%20%5Ccdot%20u_2)
![v_2 = \dfrac{ m_1 - m_2}{m_1 + m_2} \cdot u_1 + \dfrac{2 \cdot m_2}{m_1 + m_2} \cdot u_2](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cdfrac%7B%20m_1%20-%20m_2%7D%7Bm_1%20%2B%20m_2%7D%20%5Ccdot%20u_1%20%2B%20%5Cdfrac%7B2%20%5Ccdot%20m_2%7D%7Bm_1%20%2B%20m_2%7D%20%5Ccdot%20u_2)
Given that the initial velocities are equal in magnitude, we have;
u₁ = u₂ = v/2
u₁ = u₂ = 0.190 m/s/2 = 0.095 m/s
v₁ and v₂ = The final velocities of the satellites
We get;
![v_1 = \dfrac{2 \times 4.0 \times 10^3}{4.0 \times 10^3 + 7.50 \times 10^3} \times 0.095 - \dfrac{4.0 \times 10^3- 7.50\times 10^3}{4.0 \times 10^3+ 7.50\times 10^3} \times 0.095 = 0.095](https://tex.z-dn.net/?f=v_1%20%3D%20%5Cdfrac%7B2%20%5Ctimes%204.0%20%5Ctimes%2010%5E3%7D%7B4.0%20%5Ctimes%2010%5E3%20%2B%207.50%20%5Ctimes%2010%5E3%7D%20%5Ctimes%200.095%20-%20%5Cdfrac%7B4.0%20%5Ctimes%2010%5E3-%207.50%5Ctimes%2010%5E3%7D%7B4.0%20%5Ctimes%2010%5E3%2B%207.50%5Ctimes%2010%5E3%7D%20%5Ctimes%200.095%20%3D%200.095)
![v_2 = \dfrac{ 4.0 \times 10^3 - 7.50\times 10^3}{4.0 \times 10^3 + 7.50 \times 10^3} \times 0.095 + \dfrac{2 \times 7.50\times 10^3}{4.0 \times 10^3+ 7.50\times 10^3} \times 0.095 = 0.095](https://tex.z-dn.net/?f=v_2%20%3D%20%5Cdfrac%7B%204.0%20%5Ctimes%2010%5E3%20-%207.50%5Ctimes%2010%5E3%7D%7B4.0%20%5Ctimes%2010%5E3%20%2B%207.50%20%5Ctimes%2010%5E3%7D%20%5Ctimes%200.095%20%2B%20%5Cdfrac%7B2%20%5Ctimes%207.50%5Ctimes%2010%5E3%7D%7B4.0%20%5Ctimes%2010%5E3%2B%207.50%5Ctimes%2010%5E3%7D%20%5Ctimes%200.095%20%3D%200.095)
The final relative velocity of the satellite,
= v₁ + v₂
∴
= 0.095 + 0.095 = 0.190
The final relative velocity of the satellite,
= 0.190 m/s