1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
2 years ago
5

1- an example on a body that it is in motion to an observer and at rest to another.

Physics
1 answer:
vesna_86 [32]2 years ago
6 0

Answer:

#1

Explanation:

On a train you are sitting so not in motion but to someone outside the train you are in motion with the train

You might be interested in
Compare and contrast the way molecules behave in liquid to the way they behave in solids and gases.
Vitek1552 [10]
In liquids, molecules particles are close together but move in random directions.

In solids, they are closely packed together and they vibrate a little.

In gases, they love around really quickly and are farther apart (even more than liquids).
3 0
2 years ago
Read 2 more answers
The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Adjust the phasor that represents the voltage acr
SVETLANKA909090 [29]

Answer:

∅=63.43^{0}

Explanation:

z=impedance

x_{l}=2R

R=R

The resultant of the resistances in the circuit is called impedance

x_{l} is inductive reactance of the circuit

R is the resistance of the resistor

z=\sqrt{xl^{2}+R^2 }

z=\sqrt{2R^{2}+R^2 }

Z=\sqrt{5R^2}

Z=R\sqrt{5}ohms

tan∅=2R/R

tan∅=2

∅=Tan^-1(2)

∅=63.43^{0}

phase angle is ∅=63.43^{0}

3 0
2 years ago
You are in a planet where the acceleration due to gravity is known to be 3.28 m/s^2. You drop a ball and record that the ball ta
notsponge [240]
B) 7.87 m/s

The gravitational pull is the rate of change of velocity which is the acceleration. Formula for acceleration is;
a =  \frac{final \: velocity - initial \: velocity}{time \: taken}

Given:

• Initial velocity = 0m/s; I dropped the ball, and didn't throw it, so it was at rest firstly
• Time taken = 2.40s
• Acceleration = 3.28m/s^2

We're require to find the final velocity, at which the ball hit the ground with. Ignoring air resistance, keep in mind that the velocity of an object increases as it comes closer to the ground.

3.28  =  \frac{final \: velocity - 0}{2.40}
3.28 \times 2.40 = final \: velocity
final \: velocity = 7.872 \frac{m}{ {s} }

5 0
3 years ago
A small mailbag is released from a helicopter that is descending steadily at 3 m/s.
mario62 [17]

<u>Answer:</u>

a) Speed of mailbag after 3 seconds = 32.4 m/s

b) Package is 44.1 meter below helicopter

c) If the helicopter was rising steadily at 3.00 m/s

       Speed of mailbag after 3 seconds = 26.4 m/s

       Package is 44.1 meter below helicopter

<u>Explanation:</u>

a)  We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

   Initial velocity = 3 m/s, acceleration = 9.8 m/s^2 and time = 3 seconds.

   v = 3+9.8*3 = 32.4 m/s

  Speed of mailbag after 3 seconds = 32.4 m/s

b) We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

 Velocity of helicopter = 3 m/s, time taken = 3 seconds, acceleration = 0 m/s^2.

    s= 3*3+\frac{1}{2} *0*3^2\\ \\ s=9m

    Distance traveled by helicopter = 9 meter.

 Velocity of package = 3 m/s, time taken = 3 seconds, acceleration = 9.8 m/s^2.

  s= 3*3+\frac{1}{2} *9.8*3^2\\ \\ s= 53.1m

  Distance traveled by package  = 53.1 meter.

So package is (53.1-9)meter below helicopter = 44.1 m

c) Initial velocity = -3 m/s, acceleration = 9.8 m/s^2 and time = 3 seconds.

  v = -3+9.8*3 = 26.4 m/s

  Speed of mailbag after 3 seconds = 26.4 m/s

 Velocity of helicopter = -3 m/s, time taken = 3 seconds, acceleration = 0 m/s^2.

    s= -3*3+\frac{1}{2} *0*3^2\\ \\ s=-9m

    Distance traveled by helicopter = 9 meter.

 Velocity of package = -3 m/s, time taken = 3 seconds, acceleration = 9.8 m/s^2.

  s= -3*3+\frac{1}{2} *9.8*3^2\\ \\ s= 35.1m

  Distance traveled by package  = 35.1 meter.

So package is (35.1+9)meter below helicopter = 44.1 m

4 0
3 years ago
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
Other questions:
  • A ball is tossed up in the air. at its peak, it stops before beginning to fall. the ball at its peak has
    13·2 answers
  • A cyclist rides in a circle with speed 8.1 m/s. What is his centripetal acceleration if the circle has a radius of 27 m? A. 3.3
    9·1 answer
  • What is terminal speed? When a skydiver has reached terminal speed, what is the are resistance equal to? What is the skydiver’s
    6·2 answers
  • A student of mass 63.4 kg, starting at rest, slides down a slide 21.2 m long, tilted at an angle of 26.1° with respect to thehor
    11·1 answer
  • A 2.0-cm-thick bar of soap is floating on a water surface
    10·1 answer
  • What is it called when something doesn’t flow easy
    8·1 answer
  • Complete combustion of 1.11 0 g of a gaseous hydrocarbon yields 3.613 g of carbon dioxide and one 1.109 g of water. 80.288 g sam
    6·1 answer
  • The sun is made up mostly of
    10·1 answer
  • A sixth grader moves down the hall at 1.2 m/s. When he sees a bunch of eighth graders coming, he
    9·1 answer
  • Which statement is correct about waves?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!