Answer:
F = -49.1 10³ N
Explanation:
Let's use the kinematics to find the acceleration the acceleration of the bullet that they tell us is constant
² = v₀² + 2 a x
Since the bullet is at rest, the final speed is zero
x = 11.00 cm (1 m / 100 cm) = 0.110 m
0 = v₀² + 2 a x
a = -v₀² / 2 x
a = -1320²/(2 0.110)
a = -7.92 10⁶ m / s²
With Newton's second law we find the force
F = m a
F = 6.20 10⁻³ (-7.92 10⁶)
F = -49.1 10³ N
The sign means that it is the force that the tree exerts to stop the bullet
Answer:A wave has a wavelength λ, which is the distance between adjacent identical parts of the wave. The wave velocity and the wavelength are related to the wave's frequency and period by vw=λT or vw=fλ.
Explanation:
Answer:as per as Newtons second law, The forces exerted on the rope create tension.
As such,The tension is equal to the applied force.The tension is trasmitted to the opposite side and of the rope delivering the applied force.
Hope this helps.. :)
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
<u>a. by moving the book without acceleration and keeping the height of the book constant</u>
Answer:
Rate of change of magnetic field is
Explanation:
We have given diameter of the circular loop is 13 cm = 0.13 m
So radius of the circular loop 
Length of the circular loop 
Wire is made up of diameter of 2.6 mm
So radius 
Cross sectional area of wire 
Resistivity of wire 
Resistance of wire 
Current is given i = 11 A
So emf 
Emf induced in the coil is 

