Answer:
<h2>
<em>6,142mm²</em></h2>
Explanation:
Given the dimension of a paper measured by a ruler as 7.4 cm wide and 8.3 cm long, the area of the paper is expressed using the area for calculating the area of a rectangle as shown;
Area of the piece of paper = Length * Width
Given length = 7.4cm
Length = 74mm (Since 10mm = 1cm)
Width = 8.3cm
Width (in mm) = 83mm
We converted to mm since the ruler used to measure has a division of 1mm.
Substituting the given values into the formula, we will have:
Area of the piece of paper = 74mm * 83mm
Area of the piece of paper = 6,142mm²
<em>Hence, the area of the piece of paper is 6,142mm²</em>
You're talking about a <em>tornado</em>.
It's not so much the low pressure that's so dangerous in the center of a tornado. It's more a matter of the high winds that are <em>caused </em>by the low pressure.
The study of science involves the study of the natural world.
Answer:
U2 = 47.38m/s = initial velocity of B before impact
Explanation:
An example of the diagram is shown in the attached file because of missing angle of direction in the question
Mass A, B are mass of cars
A = 1965
B =1245
U1 = initial velocity of A = 52km/hr
U2 = initial velocity of B
V = common final velocity of two cars
BU2 = (A + B)*V sin ¤ ...eq1 y plane
AU1 = (A + B) *V cos ¤ ....equ 2plane
From equ 2
V = AU1/(A + B)*cos ¤
Substitute V into equation 1
We have
U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°
Substitute all parameters to get
U2 = (1965/1245)*52 * tan 30°
U2 = 47.38m/s
Coulomb's law states<span> that: The magnitude of the electrostatic force of interaction between two point charges is directly proportional to the scalar multiplication of the magnitudes of charges and inversely proportional to the square of the distance between them.
</span>