Answer: Stationary reference points are used to determine if a object is in motion because if the reference point is still,you will be able to see if the object is in motion. If you had a reference point that wasn't stationary, you wouldn't be able to tell if the object was in motion.
Explanation:
Stationary reference points are used to determine if a object is in motion because if the reference point is still,you will be able to see if the object is in motion. If you had a reference point that wasn't stationary, you wouldn't be able to tell if the object was in motion.
Answer:
276.62 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² (positive downward and negative upward)
Equation of motion

<u>Neglecting air drag</u> the velocity of the spherical drop would be 276.62 m/s
Answer:
c. 716, 800 J
Explanation:
t = Time taken
u = Initial velocity = 32 m/s
v = Final velocity = 0
s = Displacement = 60 m
a = Acceleration
m = Mass of car = 1400 kg

Work done is given by

The amount of work done to stop the car is 716800 J
Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows

where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.