After reading this whole question, I feel like I've already
earned 5 points !
-- Two satellites at the same distance, different masses:
The forces of gravity between two objects are directly
proportional to the product of the objects' masses. In
other words, the gravitational forces between the Earth
and an object on its surface are proportional to the mass of
the object. In other words, people with more mass weigh more
on the Earth, and the Earth weighs more on them.
If the satellites are both at the same distance from Earth,
then the Earth pulls on the one with more mass with greater
force, and also the one with more mass pulls on the Earth
with greater force.
-- Two satellites with the same mass, at different distances:
The forces of gravity between two objects are inversely
proportional to the square of the distance between them.
In other words, the gravitational
forces between the Earth
and an object are inversely proportional
to the square of
the distance between the object and the center of the Earth.
If
the satellites both have the same mass, then the Earth
pulls on the nearer one with greater force, and also the
nearer one pulls on the Earth with greater force.
-- Resistor in a circuit when the voltage changes:
The resistance depends on how the resistor was manufactured.
Its resistance is marked on it, and doesn't change. It remains
the same whether the voltage changes, the current changes,
the time of day changes, the cost of oil changes, etc.
If you increase the voltage in the circuit where that resistor is
installed, the current through the resistor increases. If the current
remains constant, then you can be sure that somebody snuck over
to your circuit when you weren't looking, and they either installed
another resistor in series with the original one to make the total
resistance bigger, or else they snipped the original one out of the
circuit and quickly connected one with more resistance in its place.
Answer:
The temperature of the metal is 
Explanation:
From the question we are told that
The mass of the metal is 
The specific heat of the metal is 
The mass of the oil is 
The temperature of the oil is 
The specific heat of oil is 
The equilibrium temperature is 
According to the law of energy conservation
Heat lost by metal = heat gained by the oil
So
The quantity of heat lost by the metal is mathematically represented as

=> 
Where
the temperature of metal before immersion
The negative sign show heat lost
The quantity of gained t by the metal is mathematically represented as

=> 
So

substituting values

=> 
Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:

Answer: All apply
The periodic table is an arrangement of the chemical elements in the form of a table, ordered by:
-Their atomic number (number of protons)
-Their configuration of electrons
-Their chemical properties
It was progressively developed over time as the scientific knowledge advanced; for this reason many modifications and corrections might be done in the future.
Its usefulness lies in the fact that it allows the existing elements to be organized in a more structured and coherent way, according to the chemical properties they possess. Dividing the table into rows and columns, which represent the periods and groups or families.
Then, with the location and classification of an element according to its group, we can determine how it acts by knowing its chemical and physical characteristics.
This is how with this configuration can be distinguished 4 sets of chemical elements, according to the ease of their atoms to lose or gain electrons, transforming into ions: metals, semimetals, non-metals and noble gases.
This has helped to predict the existence of various elements that have not yet been discovered, because by elements already located in the table and the periodicity found, <u>there are still empty spaces that indicate the composition of the element that has not yet been found</u>.
In addition, this table helps to simplify in some way the teaching of chemical elements and facilitates their learning, as well as their usage in the development of technological innovations.
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0