(a)
is the wavelength in air of such a sound wave.
(b)
is the wavelength of this wave in tissue.
<u>Explanation:</u>
Frequency and wavelength can be related by the equation,
Velocity = Wavelength x Frequency

where,
v - velocity of light for all EM (electromagnetic) waves in vacuum
Given:
f - 4.50 MHz = 
a) To find the wavelength in air
We know,
Speed of sound in air = 343 m/s
Apply given frequency and speed of sound in air, we get

b) If the speed of sound in tissue is 1500 m/s, find the wavelength of this wave in tissue
Speed of sound in tissue, v = 1500 m/s

Answer: 100 m
Explanation:
Initial speed(u) = 40 m/s
Final speed(v) = 0 m/s
Acceleration = v-u/t
=> 0-40/5
=> 8 m/s^2
Displacement= s
=> 2as = v^2-u^2
=> 2(-8)(s) = 0 - (40)^2
=> -16s = -1600
s = 100 m
We can say the vehicle move 100 meters before stopping.
Explanation:
u = 0m/s
v = 30m/s
a = 2m/s²
Using Kinematics, we have v = u + at.
Therefore t = (v - u) / a
= (30 - 0) / (2) = 15 seconds. (B)
Answer:
There is net loss of gravitational energy .
Explanation:
When Xanaxa is on the ground , her potential energy is assumed to be zero . When she leaps to a height of 153 m , she gains gravitational energy . When she dives and reaches the surface , she loses potential energy and on reaching the ground her potential energy becomes zero . When she further goes down inside ground to a depth of 17.5 m , she loses potential energy further . Her potential energy becomes less than zero or negative .
Ultimately her potential energy changes from zero to negative in the whole process . So there is net loss of potential energy .