Answer:
F' = (3/2)F
Explanation:
the formula for the electric field strength is given as follows:
E = F/q
where,
E = Electric Field Strength
F = Force due to the electric field
q = magnitude of charge experiencing the force
Therefore,
F = E q ---------------- equation (1)
Now, if we half the electric field strength and make the magnitude of charge triple its initial value. Then the force will become:
F' = (E/2)(3 q)
F' = (3/2)(E q)
using equation (1)
<u>F' = (3/2)F</u>
Answer:
In the explanation :)
Explanation:
Heat is a concept that is important to understand in various engineering fields. It is particularly relevant for civil, mechanical and chemical engineers because heat transfer plays a key role in material selection, machinery efficiency and reaction kinetics, respectively.
Answer:
<em>The rubber band will be stretched 0.02 m.</em>
<em>The work done in stretching is 0.11 J.</em>
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = <em>0.02 m</em>
<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.
potential energy stored = 
==>
= <em>0.11 J</em>
Answer:
B. Researching the problem, using information from a variety of sources
Explanation:
First you must create a hypothesis because with out a hypothesis you can’t do the experiment. Then you have to do some research on your problem/ hypothesis from reliable sources. After have your research you can organize your data with a data table or chart. Then when have your research look for the independent and dependent variable and the control. Then you have to make a conclusion based on multiple experimental trials then repeat the experiment and if it ends up different from the first then something is wrong and that means that you did something wrong. Hopefully this helps you :)
pls mark brainlest ;)
The waste products of a nuclear fission power plant can best be described as radioactive waste.
These are the by-products from the processes carried out that produce nuclear energy. This type of waste is highly dangerous. A lot of attention has to be paid to the collection and disposal of this waste as it must not reach any near by water bodies for example. It can be deadly for life.