The observable universe<span> is a spherical region of the </span>Universe, <span>comprising all matter that can be observed from Earth at the present time, because light and other signals from these objects have had time to reach Earth since the beginning of the cosmological expansion.
</span>
Answer:
M g H = 1/2 M v^2 potential energy = kinetic energy
v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2
v = 10.8 m/s
(C)
KE = 1/ 2 * 1252 * 144
as KE = 1/2 * m * v ^2
= 90144 J
Yes, an increase in temperature is accompanied by an increase in pressure. Temperature is the measurement of heat present and more heat means more energy. Molecules in hotter temperatures move faster and more often, eventually moving into the gaseous phase. The molecules would fill the container, and the hotter it got the more they would bounce off the walls, pushing outward, increasing the pressure.
I suppose you could measure this with some kind of loosely inflated balloon and subject it to different temperatures and then somehow measure the size/pressure of it.