Answer:
v_f = 10.38 m / s
Explanation:
For this exercise we can use the relationship between work and kinetic energy
W = ΔK
note that the two quantities are scalars
Work is defined by the relation
W = F. Δx
the bold are vectors. The displacement is
Δx = r_f -r₀
Δx = (11.6 i - 2j) - (4.4 i + 5j)
Δx = (7.2 i - 7 j) m
W = (4 i - 9j). (7.2 i - 7 j)
remember that the dot product
i.i = j.j = 1
i.j = 0
W = 4 7.2 + 9 7
W = 91.8 J
the initial kinetic energy is
Ko = ½ m vo²
Ko = ½ 2.0 4.0²
Ko = 16 J
we substitute in the initial equation
W = K_f - K₀
K_f = W + K₀
½ m v_f² = W + K₀
v_f² = 2 / m (W + K₀)
v_f² = 2/2 (91.8 + 16)
v_f = √107.8
v_f = 10.38 m / s
Answer:

Explanation:
As we know that gauge pressure of the fluid at the bottom of the cylinder is given as

now we know that pressure at the bottom is double when water is poured on the mercury
So we have

so we will have

so we have

now the volume of the water added to it is given as



Answer:
Resistance is the opposing of the flow of current through a conductor.
Skin is specific
Macrophages specific
All are specific except fever
Answer:

Explanation:
Given that:
- magnetic field intensity,

- kinetic energy of electron,

- we have mass of electron,

<em>Now, form the mathematical expression of Kinetic Energy:</em>




<u>from the relation of magnetic and centripetal forces we have the radius as:</u>


