Answer:
Some examples of vegetative propagation are farmers creating repeated crops of apples, corn, mangoes or avocados through asexual plant reproduction rather than planting seeds. Vegetative propagation can be accomplished from side-shoots, slips, stems and sections of tubers, bulbs or rhizomes.
Explanation:
Answer:
it's important because it shows how thermal energy transforms or continues to be all around us in everything
Use the concept of beat frequency to find the applicable final freqeuncy for 20Hz beat frequency.
Beat can be defined as 'the interference pattern between two sounds of slightly different frequencies0
The expression for beat frequency is given as

Where,
Final frequency
Initial frequency
The beat frequency for us is 25Hz and the initial frequency is 240Hz, then

Being an absolute value, two values are possible, both in addition and subtraction:

The two possible values are


The average speed would be 33.29m/s.The average speed equation is:

First you will need to solve for the distance you traveled in each scenario. So we can solve this by getting the product of speed and the time traveled.
Scenario 1:
Speed = 29m/s
Time = 120s
Distance = ?
Distance = (29m/s)(120s)
= 3,480m
Scenario 2
Speed = 35m/s
Time = 300s
Distance = ?
Distance = (35m/s)(300s)
= 10,500m
Now that you have the distance of both, you can solve for your average speed.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s