<u>Momentum</u>
- a vector quantity; has both magnitude and direction
- has the same direction as object's velocity
- can be represented by components x & y.
Find linebacker momentum given m₁ = 120kg, v₁ = 8.6 m/s north
P₁ = m₁v₁
P₁ = (120)(8.6)
[ P₁ = 1032 kg·m/s ] = y-component, linebacker momentum
Find halfback momentum given m₂ = 75kg, v₂ = 7.4 m/s east
P₂ = m₂v₂
P₂ = (75)(7.4)
[ P₂ = 555 kg·m/s ] = x-component, halfback momentum
Find total momentum using x and y components.
P = √(P₁)² + (P₂)²
P = √(1032)² + (555)²
[[ P = 1171.77 kg·m/s ]] = magnitude
!! Finally, to find the magnitude of velocity, take the divide magnitude of momentum by the total mass of the players.
P = mv
P = (m₁ + m₂)v
1171.77 = (120 + 75)v <em>[solve for v]</em>
<em />v = 1171.77/195
v = 6.0091 ≈ 6.0 m/s
If asked to find direction, take inverse tan of x and y components.
tanθ = (y/x)
θ = tan⁻¹(1032/555)
[ θ = 61.73° north of east. ]
The magnitude of the velocity at which the two players move together immediately after the collision is approximately 6.0 m/s.
Answer: The magnitude of force per length that each wire exert on the other wire is 2.67×10^-5 N/m.
The force is repulsive.
Explanation: Please see the attachments below
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
If a force always acts perpendicular to an object's direction of motion, that force cannot change the object's kinetic energy. It is a true statement .
Kinetic energy is the energy that an object possesses due to its motion. It is basically the energy of mass in motion. Kinetic energy can never be negative and it is a scalar quantity i.e. it provides only the magnitude and not the direction.
According to law of conservation of mechanical energy change in potential energy is equal and opposite to the change in the kinetic energy.
According to the principle of conservation of mechanical energy, The total mechanical energy of a system is conserved i.e., the energy can neither be created nor be destroyed; it can only be internally converted from one form to another if the forces doing work on the system are conservative in nature.
since, potential energy is stored in the form of work done
Work done = Fs cos (theta)
If force always acts perpendicular to an object's direction of motion
theta = 90 °
cos (90 ) = 0
Work done = 0
since , there is no work done , hence kinetic energy will not change
To learn more about kinetic energy here
brainly.com/question/12669551
#SPJ4