Answer:
7.9m/s
Explanation:
We are given that
Mass of wagon=40 kg

Tension=
Initial velocity of wagon=
Displacement=s=80 m
Net force applied on wagon=
By using 

We know that

Using the formula


Answer:
Action: Gravity pulls on the ball.
Reaction: The ball falls to the ground.
Explanation:
Answer:
what I don't know show a question mark me as brainleast
Answer:
103.5 meters
Explanation:
Given that a stunt person has to jump from a bridge and land on a boat in the water 22.5 m below. The boat is cruising at a constant velocity of 48.3 m/s towards the bridge. The stunt person will jump up at 6.45 m/s as they leave the bridge.
The time the person will jump to a certain spot under the bridge can be calculated by using the formula below:
h = Ut + 1/2gt^2
since the person will fall under gravity, g = 9.8 m/s^2
Also, let assume that the person jump from rest, then, U = 0
Substitute h, U and g into the formula above
22.5 = 1/2 * 9.8 * t^2
22.5 = 4.9t^2
22.5 = 4.9t^2
t^2 = 22.5/4.9
t^2 = 4.59
t = 
t = 2.143 seconds
From definition of speed,
speed = distance /time
Given that the boat is cruising at a constant velocity of 48.3 m/s towards the bridge, substitute the speed and the time to get the distance.
48.3 = distance / 2.143
distance = 48.3 * 2.143
distance = 103.5 m
Therefore, the boat should be 103.5m away from the bridge at the moment the stunt person jumps?