Answer:
The 3rd graph
Explanation:
A free body diagram is a diagram which shows all the forces acting on an object.
The problem asks us to find the free body diagram of block A, so we must find all the forces acting on block A.
We have 3 forces acting on block A in total:
- The force of gravity (its weight), which pushes the block downward (in the diagram, it is the force represented with 
- The tension in the rope 1, which pulls block A upwards: this force is represented with 
- The tension in the rope 2, due to the weight of block 2, which pulls block A downwards: this force is represented with 
Based on the direction of these 3 forces, the correct diagram is the 3rd one.
The answer is:
Hopping.
Explanation:
Hopping is done by taking off on one foot and landing back on that same foot. Hopping is done in shorter intervals, meaning you usually don't travel large distances through a single hop. Hopping is categorized as short leaps for its small distance covered singularly, and each hop is done only on one foot.
<em>(Think about if one of your feet/legs is injured or asleep. If you wanted to go from say the living room to the kitchen, but didn't wish to move that leg or foot, you would likely hop on one foot to get to the destination.)</em>
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m
Precisely 84% if the Earth is made of mantle.
Answer:
at the Equator
Explanation:
The four seasons are determined by four main positions in the Earth's orbit in its turn around the Sun (ecliptic plane), which are called solstices and equinoxes: winter solstice (Capricorn point, December 22), spring equinox (Aries point, around March 21-22), summer solstice (Cancer point, June 21) and autumn equinox (Libra point, around September 22-23).
In the equinoxes, the axis of rotation of the Earth is perpendicular to the sun's rays, which fall vertically over the equator. In solstices, the axis is inclined 23.5º, so that the sun's rays fall vertically on the Tropic of Cancer (summer in the northern hemisphere) or Capricorn (summer in the southern hemisphere).
When falling vertically on Ecuador, it generates a greater impact on the surface of the Tierre reaching a greater amount of energy and therefore UV rays.