Answer:
r₂ = 0.2 m
Explanation:
given,
distance = 20 m
sound of average whisper = 30 dB
distance moved closer = ?
new frequency = 80 dB
using formula

I₀ = 10⁻¹² W/m²
now,



to hear the whisper sound = 80 dB



we know intensity of sound is inversely proportional to square of distances



r₂ = 0.2 m
Answer:
a)-1.014x
J
b)3.296 x
J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
= -GMaMb/ d
= - 6.67 x
x 47 x 110/ 3.4 => -1.014x
J
b) at d= 0.8m (3.4-2.6) and
=-1.014x
J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
+
=
+ 
As sphere starts from rest and sphere A is fixed at its place, therefore
is zero
=
+ 
The final potential energy is
= - GMaMb/d
Solving for '
'
=
+ GMaMb/d => -1.014x
+ 6.67 x
x 47 x 110/ 0.8
= 3.296 x
J
Answer:
Moment of inertia of the system is 289.088 kg.m^2
Explanation:
Given:
Mass of the platform which is a uniform disk = 129 kg
Radius of the disk rotating about vertical axis = 1.61 m
Mass of the person standing on platform = 65.7 kg
Distance from the center of platform = 1.07 m
Mass of the dog on the platform = 27.3 kg
Distance from center of platform = 1.31 m
We have to calculate the moment of inertia.
Formula:
MOI of disk = 
Moment of inertia of the person and the dog will be mr^2.
Where m and r are different for both the bodies.
So,
Moment of inertia
of the system with respect to the axis yy.
⇒ 
⇒ 
⇒ 
⇒
The moment of inertia of the system is 289.088 kg.m^2
Longitudinal waves have energy that vibrates parallel to the medium - a compression is the region of greatest density and the rarefaction the region of highest density .The rarefaction (much like the maximum amplitude in a transverse wave) has a region of lowest density, typically situated in the exact center of the region.