Answer:
The minimum value of wall thickness t=3.63 mm.
Explanation:
Given:
D=200 mm
P=4 MPa
t= Wall thickness
maximum shear stress=27.5 MPa
We know that
hoop stress 
Longitudinal stress
So maximum shear tress in plane

Now by putting the value

So t=3.36 mm
The minimum value of wall thickness t=3.63 mm.
Answer:
The maximum theoretical height that the pump can be placed above liquid level is 
Explanation:
To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature. As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

(
stands here for density,
for height)
Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:


This means that pressure drop is proportional to the suction lift's height.
We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.
That means:

We insert that into our last equation and get:

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.
Answer:
I. Tension (cable A) ≈ 6939 lbf
II. Tension (cable B) ≈ 17199 lbf
Explanation:
Let's begin by listing out the data that we were given:
mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,
g = 32.17405 ft/s²
The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.
Mathematically represented thus:
T = mg + ma
where:
T = tension, m = mass, g = gravitational force,
a = acceleration
I. For Cable A, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-20)]
T = 18339.2085 - 11400 = 6939.2085
T ≈ 6939 lbf
II. For Cable B, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-2)]
T = 18339.2085 - 1140 = 17199.2085
T ≈ 17199 lbf
Answer:
They are used in imaging application gadgets such as video cameras,TV, surveillance cameras and document scanners
Explanation:
A charge couple device (CCDs) are highly capable in imagery detector.Its common application is in video and digital imaging.The quality of a charge couple device is determined by factors such as the dynamic range, dark charge level and the quantum efficiency.These devices serve the purpose of detecting optical images though some are installed with applications for data storage.
Answer:
t = 25.10 sec
Explanation:
we know that Avrami equation

here Y is percentage of completion of reaction = 50%
t is duration of reaction = 146 sec
so,


taking natural log on both side
ln(0.5) = -k(306.6)

for 86 % completion




t = 25.10 sec