Answer:
W=2 MW
Explanation:
Given that
COP= 2.5
Heat extracted from 85°C
Qa= 5 MW
Lets heat supplied at 150°C = Qr
The power input to heat pump = W
From first law of thermodynamics
Qr= Qa+ W
We know that COP of heat pump given as



W=2 MW
For Carnot heat pump


2.5 T₂ - 895= T₂
T₂=596.66 K
T₂=323.6 °C
Answer:
F=1.47 KN
Explanation:
Given that
Diameter of plate = 25 cm
Height of pool h = 3 m
We know that force can be given as
F= P x A
P=ρ x g x h
Now by putting the values
P=1000 x 10 x 3
P= 30 KPa


F= 30 x 0.049 KN
F=1.47 KN
So the force on the plate will be 1.47 KN.
In industries together with production, we want people to address the manufacturing of merchandise and the usage of heavy machinery.
<h3>What is the painting situation?</h3>
In such painting situations, people are at risk of injuries, and this prices the maximum for the company. So so that you can put into effect value discount is such conditions we want to have right coincidence cowl plans for the people and make sure all of the protection precautions are taken withinside the factory.
- The people have to be properly educated on using protection measures and in case any injuries arise we have to have coverage claims in order that we not want to make investments extra cash and we also can offer protection and protection to the people.
- This approach is excellent for this enterprise due to the fact regardless of what number of precautions we take people are uncovered to fitness risks and as a result having the right coverage insurance is a superb value discount strategy.
Read more bout the compensation :
brainly.com/question/25273589
#SPJ1
Answer:
like a mountain place thanks #careonlearning
Answer:
The distance measure from the wall = 36ft
Explanation:
Given Data:
w = 10
g =32.2ft/s²
x = 2
Using the principle of work and energy,
T₁ +∑U₁-₂ = T₂
0 + 1/2kx² -wh = 1/2 w/g V²
Substituting, we have
0 + 1/2 * 100 * 2² - (10 * 3) = 1/2 * (10/32.2)V²
170 = 0.15528V²
V² = 170/0.15528
V² = 1094.796
V = √1094.796
V = 33.09 ft/s
But tan ∅ = 3/4
∅ = tan⁻¹3/4
= 36.87°
From uniform acceleration,
S = S₀ + ut + 1/2gt²
It can be written as
S = S₀ + Vsin∅*t + 1/2gt²
Substituting, we have
0 = 3 + 33.09 * sin 36.87 * t -(1/2 * 32.2 *t²)
19.85t - 16.1t² + 3 = 0
16.1t² - 19.85t - 3 = 0
Solving it quadratically, we obtain t = 1.36s
The distance measure from the wall is given by the formula
d = VCos∅*t
Substituting, we have
d = 33.09 * cos 36. 87 * 1.36
d = 36ft