The standard state formation reaction is a chemical reaction in which one moles of substance in its standard state is formed from its constituent element in their standard state.All the substance must be in their most stable state at 100kpa and 25 degrees celsius.
therefore for HF is
1/2H2 +1/2F2 =HF
Answer:
flourine(1681),carbon(1086),lithium(520) and potassium(419)
as we can see that the ionization energy of flourine is the highest than carbon than lithium and than potassium
Explanation:
i hope it will help you
The correct answer is C the suns energy from the earth
*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
The balanced chemical reaction is expressed as:
M + F2 = MF2
To determine the moles of the element fluorine present in the product, we need to determine the moles of the product formed from the reaction and relate this value to the ratio of the elements in MF2. We do as follows:
moles MF2 produced = 0.600 mol M ( 1 mol MF2 / 1 mol M ) = 0.600 mol MF2
molar mass MF2 = 46.8 g MF2 / 0.6 mol MF2 = 78 g/mol
moles MF2 = 46.8 g ( 1 mol / 78 g ) = 0.6 mol
moles F = 0.6 mol MF2 ( 2 mol F / 1 mol MF2 ) = 1.2 moles F