We have a problem about conservation and velocity, we will find that it does affect the speed of the ball, increasing it by 1.7m/s.
There is something called momentum, which we can define as the "quantity of movement", and we can simply write as the product between velocity and mass.
The momentum is conservative, then we have conservation of momentum.
This means that when you run whit the ball in your hands, the momentum of the ball will be equal to your velocity times the mass of the ball, and this must conserve after you throw the ball.
Now with this idea in mind, this means that if you run with a velocity V, and you throw the ball with a velocity V', the velocity of the ball when it leaves your hand will be:
V + V'.
So, if you run with a velocity of 1.7m/s forward and you throw the ball (assuming in the same direction) the speed of the ball will be 1.7m/s larger than if you were to throw it standing still.
If you want to learn more, you can read:
brainly.com/question/13639113
Answer:
egrfeirugherhgourehgabgwehgoehborghrewuhgelkg
Explanation:
Answer:
yes every action as an equal and and opposite reaction. if you throw a tool then it will give you a reaction and you will move back.
Explanation:
According to Newton's third law of motion, when two bodies interact between them, appear equal forces and opposite senses in each of them.
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if you as an astronaut in the described situation throw your tool in the direction that you are traveling (in the opposite direction of the space station), according to Newton's third law, you will be automatically moving towards the station
Magnets are attracted when each of the different sides, most commonly known as "North" and "South", are facing each other. They repel when North and North, or South and South are facing each other.