Answer:
Kinetic energy and momentum are conserved.
Explanation:
All of the electromagnetic energy radiated from the sun (and from
other stars) is the product of nuclear fusion in its core.
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
a)
1.35 kg
b)
2.67 ms⁻¹
Explanation:
a)
= mass of first body = 2.7 kg
= mass of second body = ?
= initial velocity of the first body before collision = 
= initial velocity of the second body before collision = 0 m/s
= final velocity of the first body after collision =
using conservation of momentum equation

Using conservation of kinetic energy

b)
= mass of first body = 2.7 kg
= mass of second body = 1.35 kg
= initial velocity of the first body before collision = 4 ms⁻¹
= initial velocity of the second body before collision = 0 m/s
Speed of the center of mass of two-body system is given as
ms⁻¹