1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
10

A carrot hangs from the ceiling by a rope,

Physics
2 answers:
valentina_108 [34]3 years ago
7 0

Answer: Diagram B

Explanation:

A free body diagram shows the forces acting on an object in a certain scenario.

In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.

The diagram depicting this is diagram B.

VashaNatasha [74]3 years ago
5 0

Answer:

ft and fg

Explanation:

You might be interested in
Newton’s law of universal gravitation a. is equivalent to Kepler’s first law of planetary motion. b. can be used to derive Keple
Finger [1]
Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.

Newton published his law of universal gravitation almost a hundred
years later.  Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws.  Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.

This demonstration is a tremendous boost for the work of both Kepler
and Newton.
5 0
3 years ago
Read 2 more answers
What does the index of refraction directly measure? the angle between the incident ray and the normal line the angle between the
icang [17]
<span>The bending of light in a medium</span>
9 0
4 years ago
Read 2 more answers
Which quantities indicate a direction and a magnitude?<br>Check all that apply.​
Korvikt [17]

Answer:

Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position.

Explanation:

The only thing I found in my notes for this question was this although it isn't in your choices, I just hope this helps you and hope you get it right!

7 0
3 years ago
Three parallel wires each carry current I in the directions shown in (Figure 1). The separation between adjacent wires is d.
jasenka [17]

(a) The magnitude of the net magnetic force per unit length on the top wire is μI²/πd.

(b) The magnitude of the net magnetic force per unit length on the middle wire is zero.

(c) The magnitude of the net magnetic force per unit length on the bottom wire is 3μI²/4πd.

<h3>Force per unit length</h3>

The magnitude of the net magnetic force per unit length on the top wire is calculated as follows;

F₁/L = (μI₁/2π) x (I₂/d + I₃/d)

F₁/L = (μI/2π) x (I/d + I/d)

F₁/L = (μI/2π) x (2I/d)

F₁/L = μI²/πd

The magnitude of the net magnetic force per unit length on the middle wire is calculated as follows;

F₂/L = (μI₂/2π) x (I₃/d - I₁/d)

F₂/L = (μI/2π) x (I/d -  I/d) = 0

The magnitude of the net magnetic force per unit length on the middle bottom is calculated as follows;

F₃/L = (μI₂/2π) x (I₁/d + I₂/d)

F₃/L =  (μI/2π) x (I/2d + I/d)

F₃/L =  (μI/2π) x (3I/2d)

F₃/L =  3μI²/4πd

Thus, the magnitude of the net magnetic force per unit length on the top wire is μI²/πd.

The magnitude of the net magnetic force per unit length on the middle wire is zero.

The magnitude of the net magnetic force per unit length on the bottom wire is 3μI²/4πd.

Learn more about magnetic force here: brainly.com/question/13277365

#SPJ1

6 0
2 years ago
After a fall, a 90 kg rock climber finds himself dangling from the end of a rope that had been 16 m long and 7.8 mm in diameter
Nesterboy [21]

Explanation:

Given that,

Mass of the rock climber, m = 90 kg

Original length of the rock, L = 16 m

Diameter of the rope, d = 7.8 mm

Stretched length of the rope, \Delta L=3.1\ cm

(a) The change in length per unit original length is called strain. So,

\text{strain}=\dfrac{\Delta L}{L}\\\\\text{strain}=\dfrac{3.1\times 10^{-2}}{16}\\\\\text{strain}=0.00193

(b) The force acting per unit area is called stress.

\text{stress}=\dfrac{mg}{A}\\\\\text{stress}=\dfrac{90\times 10}{\pi (3.9\times 10^{-3})^2}\\\\\text{stress}=1.88\times 10^7\ Pa

(c) The ratio of stress to the strain is called Young's modulus. So,

Y=\dfrac{\text{stress}}{\text{strain}}\\\\Y=\dfrac{1.88\times 10^7}{0.00193}\\\\Y=9.74\times 10^9\ N/m^2

Hence, this is the required solution.

8 0
3 years ago
Other questions:
  • What is any factor of an experiment that is not changed called? control, dependent variable ,independent variable
    7·2 answers
  • Which is 20 miles per hour north an example of?
    15·2 answers
  • *PLEASE HURRY ITS FOR A QUIZ*
    14·1 answer
  • Physics help! I really need this homework done:
    8·1 answer
  • How old is the universe
    10·2 answers
  • A glow-worm of mass 5.0 g emits red light (650 nm) with a power of 0.10 W entirely in the backward direction. To what speed will
    11·2 answers
  • A car is traveling at 120 km/h (75 mph). When applied the braking system can stop the car with a deceleration rate of 9.0 m/s2.
    14·1 answer
  • 4. Explain how energy is transformed in a spring.
    15·1 answer
  • Compare Earth’s, Venus’s, and Mars’s ability to sustain life.
    6·2 answers
  • Orginize it
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!