Answer:
Fiber is "Not Digestible"
Explanation:
Carbohydrates that contain fiber cannot be completely digested. the indigestible components of fiber are measured in the calorimeter, but they are not accessible for energy in the human body.
One separation technique to be used is the paper chromatography. This works by separating the components of the mixture through the difference of their concentrations. There is a stationary phase and the mobile phase, which flows through the stationary phase. The components travel at different rates and is usually signified by the colors. If more than one color would appear, that means that the dye is a mixture.
Answer:
M of Al=33.09g or 0.0331kg
Explanation:
Heat Energy= specific heat*mass*change in temperature
H=M*C*T
make M subject of the formula
M=H/CT
M=685J/0.90J/g°C*(45°C-22°C)
M=685J/0.90J/g°C*23°C
M=685J/20.7J/g
M=33.09g or 0.0331kg
These are two questions and two answers
Question 1.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 9.11 × 10⁻³¹ kg
b) λ = 3.31 × 10⁻¹⁰ m
c) c = 3.00 10⁸ m/s
d) s = ?
<u>2) Formula:</u>
The wavelength (λ), the speed (s), and the mass (m) of the particles are reltated by the Einstein-Planck's equation:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Solve for s:
Substitute:
- s = 6.626×10⁻³⁴J.s / ( 9.11 × 10⁻³¹ kg × 3.31 × 10⁻¹⁰ m) = 2.20 × 10 ⁶ m/s
To express the speed relative to the speed of light, divide by c = 3.00 10⁸ m/s
- s = 2.20 × 10 ⁶ m/s / 3.00 10⁸ m/s = 7.33 × 10 ⁻³
Answer: s = 7.33 × 10 ⁻³ c
Question 2.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 45.9 g (0.0459 kg)
b) s = 70.0 m/s
b) λ = ?
<u>2) Formula:</u>
Macroscopic matter follows the same Einstein-Planck's equation, but the wavelength is so small that cannot be detected:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Substitute:
- λ = 6.626×10⁻³⁴J.s / ( 0.0459 kg × 70.0 m/s) = 2.06 × 10 ⁻³⁴ m
As you see, that is tiny number and explains why the wave nature of the golf ball is undetectable.
Answer: 2.06 × 10 ⁻³⁴ m.