A-leads to the abrasion of rocks and minerals
A-dense vegetation cover
True
Explanation:
Weathering is the physical disintegration and chemical decomposition of rocks to form sediments and soils.
Agent of weathering are wind, water and glacier.
Chemical weathering contributes to physical weathering in that it leads to the abrasion of rocks and minerals.
During chemical weathering, a rock chemically combines with materials in the environment and weakens it.
When physical weathering processes are induced, grains produced independently weakening of bonds in rocks grind against one another and wears each other off.
An area with a dense vegetation cover undergoes rapid chemical weathering:
- Plant roots penetrates deep into the rock and increases the surface area of chemical action.
- Plants produce chemicals that combines with rocks and causes them to decay.
- Since the area is always moist, chemical action becomes more severe.
Buildings and statues made of stone are subjected to the same degree of weathering as rocks exposed naturally.
This is true.
Statues and buildings weather just like rocks we find in nature.
It is the same sunshine and rain that impacts rocks that also impacts buildings and statues.
So they degrade at the same rate except they are protected.
learn more:
Erosion brainly.com/question/2473244
#learnwithBrainly
As a solution is contained with 11% by mass of sodium
chloride, this will therefore conclude that the 100g of the solution is
composed of the 11g of the sodium chloride. In which, the correct answer would
be specified as letter c.
The answer is C because I kno
<span>The human body is organized at different levels, starting with the cell. Cells are organized into tissues, and tissues form organs. Organs are organized into organ systems such as the skeletal and muscular systems.</span>
Answer:
Covalent compounds have low forces of attraction between their molecules (i.e. one H2O molecule isn't as attracted to another H2O molecule than the oppositely charges ions are in an ionic compound). Little energy is needed to break their bonds, therefore they have low meting points. Hope this is what you are looking for!
Explanation:
Brainliest please?