Answer:
I believe this is a K-12 test question. If the answers below are what you have on your test . . .
- Precise
- Accurate
- Identical
- None of the above
Then the answer is <u>precise</u>.
Answer: 72.93 litres
Explanation:
Given that:
Volume of gas (V) = ?
Temperature (T) = 24.0°C
Convert 24.0°C to Kelvin by adding 273
(24.0°C + 273 = 297K)
Pressure (P) = 1.003 atm
Number of moles (n) = 3 moles
Molar gas constant (R) is a constant with a value of 0.0821 atm L K-1 mol-1
Then, apply ideal gas equation
pV = nRT
1.003 atm x V = 3.00 moles x 0.0821 atm L K-1 mol-1 x 297K
1.003 atm•V = 73.15 atm•L
Divide both sides by 1.003 atm
1.003 atm•V/1.003 atm = 73.15 atm•L/1.003 atm
V = 72.93 L
Thus, the volume of the gas is 72.93 litres
The clearer answer is they measure the remaining carbon, and the less that there is the older the fossil is.
In a titration, for an acid to neutralize a base, at the equivalence point, there should be an equal number of moles of H+ and OH-.
Moles of OH- can be found by multiplying the concentration of the base by the volume. (You will need to keep in mind the stoichimetric coefficients if the strong base is Ca(OH)₂, Ba(OH)₂, or Sr(OH)₂.
Moles of OH- = moles of H+
(0.253 M) * 0.005 L = 0.01000 L * c
c = 0.1265 M
The concentration of HBr is 0.127 M.