Answer:
3 e⁻ transfer has occurred.
Explanation
This is a redox reaction.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet or duplet configuration. An octet configuration is that of outer shell configuration of noble gas.
- [Ne]= (1s²) (2s² 2p⁶)
A combination of both the reactions( Half-reactions) leads to a redox reaction.
Let us look at initial configurations of Al and Cl
[Al]= 1s² 2s² 2p⁶ 3s² 3p¹
[Cl]= 1s² 2s² 2p⁶ 3s² 3p⁵
Hence, Al can lose 3 electrons to achieve octet config.
and, Cl can gain 1e to achieve nearest noble gas config. [Ar]
This reaction can be rewritten, by clearly mentioning the oxidation states of all the entities involved.
Al⁰ + Cl⁰ → (Al⁺³)(Cl⁻)₃
Here, Aluminum is undergoing an oxidation(i.e loss of electrons) from: 0→(+3)
Chlorine undergoes a reduction half reaction (i.e gain of electrons) from: 0→(-1). There are 3 such chlorine atoms, hence 3 e⁻ transfer has occurred.
Explanation:
When a metal replaces another metal in solution, we say such a reaction has undergone a single displacement reaction.
In such a reaction, metal higher up in the activity series replaces another one due to their position.
To known the metal or metals that will replace the given copper, we need to reference the activity series of metals.
Every metal higher than copper in the series will displace copper from the solution.
So, there metals are: potassium, sodium, lithium, barium, strontium etc.
Answer:The major types of solids are ionic, molecular, covalent, and metallic. ... (network) , or metallic, where the general order of increasing strength of interactions. ... In ionic and molecular solids, there are no chemical bonds between the ... by dipole –dipole interactions, London dispersion forces, or hydrogen ...
Explanation:
Hope this will help you
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>