Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
Answer:
Explanation:
The given pH = 8.55
Unknown:
[H₃O⁺] = ?
[OH⁻] = ?
In order to find these unknowns we must first establish some relationship.
pH = -log[H₃O⁺]
8.55 = -log[H₃O⁺]
[H₃O⁺] = inverse log₁₀(-8.55) = 2.82 x 10⁻⁹moldm⁻³
To find the [OH⁻],
pH + pOH = 14
pOH = 14 - pH = 14 - 8.55
pOH = 5.45
pOH = -log[OH⁻]
[OH⁻] = inverse log₁₀ (-5.45) = 3.55 x 10⁻⁶moldm⁻³
The solution is basic because it has more concentration of OH⁻ ions compared to H⁺ ions.
Atomic mass of Sulfur = 32g
32g of Sulfur is one mole.
1g of Sulfur is
96.21g of Sulfur is
Answer:
P₂ = 140 KPa
Explanation:
Given data:
Initial volume = 8.0 L
Final volume = 4.0 L
Initial pressure = 70 KPa
Final pressure = ?
Solution:
According to Boyle's law
P₁V₁ = P₂V₂
P₂ = P₁V₁ / V₂
P₂ = 70 KPa ×8.0 L/4.0 L
P₂ = 560 KPa .L / 4.0 L
P₂ = 140 KPa
Answer:
BRAINLIEST PLZZZ
Explanation:
All types of organisms are capable of reproduction, growth and development, maintenance, and some degree of response to stimuli.