Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Its an electrochemical cell that derives electrical energy from spontaneous redox reactions taking place within the cell.
The speed of the sound wave in the medium, given the data is 3900 m
<h3>Velocity of a wave </h3>
The velocity of a wave is related to its frequency and wavelength according to the following equation:
Velocity (v) = wavelength (λ) × frequency (f)
v = λf
With the above formula, we can obtain the speed of the sound wave. Details below:
<h3>How to determine speed of the sound wave</h3>
The speed of the wave can be obtained as illustrated below:
- Frequency (f) = 600 Hz
- Wavelength (λ) = 6.5 m
- Velocity (v) =?
v = λf
v = 6.5 × 600
v = 3900 m
Thus, the speed of the sound wave in the medium is 3900 m
Learn more about wave:
brainly.com/question/14630790
#SPJ4