Answer:
The freezing point of the solution is -1.4°C
Explanation:
Freezing point decreases by the addition of a solute to the original solvent, <em>freezing point depression formula is:</em>
ΔT = kf×m×i
<em>Where Kf is freezing point depression constant of the solvent (1.86°C/m), m is molality of the solution (Moles CaBr₂ -solute- / kg water -solvent) and i is Van't Hoff factor.</em>
Molality of the solution is:
-moles CaBr₂ (Molar mass:
189.9g ₓ (1mol / 199.89g) = 0.95 moles
Molality is:
0.95 moles CaBr₂ / 3.75kg water = <em>0.253m</em>
Van't hoff factor represents how many moles of solute are produced after the dissolution of 1 mole of solid solute, for CaBr₂:
CaBr₂(s) → Ca²⁺ + 2Br⁻
3 moles of ions are formed from 1 mole of solid solute, Van't Hoff factor is 3.
Replacing:
ΔT = kf×m×i
ΔT = 1.86°C/m×0.253m×3
ΔT = 1.4°C
The freezing point of water decreases in 1.4°C. As freezing point of water is 0°C,
<h3>The freezing point of the solution is -1.4°C</h3>
<em />
Krypton- rare gas, element in the noble gases
Lye- sodium hydroxide, compound
Graphite- element
Vinegar- is acetic acid, compound( aqueous solution)
Precipitate
hope this helped please mark as brainlest please ! have a good day
If you'd like the full working, here it is:
I calculated this by using the formula triangle.
Mass
Number Formula
Of moles Mass
To calculate the number if moles in a substance, you need to divide the Mass by the Formula mass. You get the formula mass by adding the atomic masses of the elements in the compound together. In this situation, H2O, it would be two hydrogen molecules plus one oxygen molecule which is 2 + 16. This is because the atomic mass of Hydrogen is 1 and the atomic mass of Oxygen is 16.
Now that we have the Formula mass we can go ahead and do the calculation since we already have the Mass. You do as follows:
Mass divided by Formula mass which is in this case - 25 divided by 18
By doing this calculation you will get the answer which is 1.38 moles which can be rounded to 1.4
Hope this helps :)