Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.
Answer:
23dm
Explanation:
so you have to do 10g +13dm so the you have to times it by 3 three times