Pressure and heat. I hope this helps
The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.
Answer:
=6.5%
Explanation:
Mass of the ball:
]
Initial velocity of the ball: 
final velocity of the ball:
which is -30/100 of
=
Mass of the bottle: 
Initial velocity of the bottle: 
final velocity of the bottle:
is unknown (to find)
<em>by using conservation momentum, which stated that the initial momentum is equal to the final momentum.</em>
<em />
<em />
<em>so since the bottle is at rest firstly, therefore </em>
<em />
<em />
<em />
<em />
<em> </em><em>equation 1</em>
so now substitute
into equation 1

<em />
<em />
<em>collect the like terms</em>


divide both side by 

Now substitute

6.5%
<em />
In our Solar System, Jupiter is the largest planet we have. it has the surface area of 23.71 billion mi^2. it beats all the other planets in both mass and volume.
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm