Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.
The mass of magnesium, which has a density of 1.74 g/cm is 504.6 g.
<h3>What is mass?</h3>
Mass is the quantity of matter. Mass can be calculated by multiplying density by volume.
Magnesium is a chemical element with the atomic number 12. It is needed in the body in trace amounts. It can cause malnutrition in the body.
Mass = Density x volume
We know the density and the volume of magnesium.
Density = 1.74
Volume = 290
Density x volume
Putting the value in the equation
1.74 x 290 = 504.6 g
Thus, the mass of magnesium is 504.6 g.
To learn more about mass, refer to the below link:
brainly.com/question/22795877
#SPJ1
B)a force pushed the rock layers after they were formed
<span>If I done the math correctly it is 3729J because you multiply 16.5 g by the 2260 J/g and get 3729 J</span>