Answer:
Gay-Lussac’s law, because as the pressure increases, the temperature increases
Explanation:
First of all, we can notice that the volume of the tank is fixed: this means that the volume of the air inside is also fixed.
This means that in this situation we can apply Gay-Lussac's law, which states that:
"for a gas kept at constant volume, the pressure of the gas is proportional to the absolute temperature of the gas".
Mathematically:

where p is the pressure in Pascal and T is the temperature in Kelvin.
In this case, the tank is filled with air: this means that the pressure of the gas inside the tank increases. And therefore, according to Gay-Lussac's law, the temperature will increase proportionally, and this explains why the tank gets hot.
Answer:
You need to use the equations of motion which I wrote down in the image. Since the runner starts from rest, the initial velocity(v0) is 0 and initial position(x0) is also 0. The solution is in the image attached below.
Charge dQ on a shell thickness dr is given by
dQ = (charge density) × (surface area) × dr
dQ = ρ(r)4πr²dr
∫ dQ = ∫ (a/r)4πr²dr
∫ dQ = 4πa ∫ rdr
Q(r) = 2πar² - 2πa0²
Q = 2πar² (= total charge bound by a spherical surface of radius r)
Gauss's Law states:
(Flux out of surface) = (charge bound by surface)/ε۪
(Surface area of sphere) × E = Q/ε۪
4πr²E = 2πar²/ε۪
<span>E = a/2ε۪
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>