Answer: Option (b) is correct.
Explanation:
Since we know that,
P = VI
where;
P = power
V= Voltage
I = Current
Since it's given that,
P = 600W
I = 2.5 A
equating these values in the above equation, we get;
<em>V =
</em>
<em>V = 240 V</em>
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />
Answer:
Radius of the loop is 0.18 m or 18 cm
Explanation:
Given :
Current flowing through the wire, I = 45 A
Magnetic field at the center of the wire, B = 1.50 x 10⁻⁴ T
Number of turns in circular wire, N = 1
Consider R be the radius of the circular wire.
The magnetic field at the center of the current carrying circular wire is determine by the relation:
Here μ₀ is vacuum permeability constant and its value is 4π x 10⁻⁷ Tm/A.
Substitute the suitable values in the above equation.

R = 0.18 m
Answer: it goes the same speed as the car
Explanation: