pH solution = 8.89
<h3>Further explanation</h3>
Given
The concentration of HBr solution = 1.3 x 10⁻⁹ M
Required
the pH
Solution
HBr = strong acid
General formula for strong acid :
[H⁺]= a . M
a = amount of H⁺
M = molarity of solution
HBr⇒H⁺ + Br⁻⇒ amount of H⁺ = 1 so a=1
Input the value :
[H⁺] = 1 x 1.3 x 10⁻⁹
[H⁺] = 1.3 x 10⁻⁹
pH = - log [H⁺]
pH = 9 - log 1.3
pH = 8.89
Answer:
Hello my Friend! The answer is: Manganese(III) oxide is a transition metal compound. The oxidation state of manganese in this compound is +3 , and the chemical formula of the compound is Mn2O3.
Explanation:
Manganese can have two oxidation states: +2 and +3, but in this case, the "(III)" indicates that in this compound, the state of oxidation is +3.
Answer:
A.
Explanation:
Using the ideal gas equation, we can calculate the number of moles present. I.e
PV = nRT
Since all the parameters are equal for both gases, we can simply deduce that both has the same number of moles of gases.
The relationship between the mass of each sample and the number of moles can be seen in the relation below :
mass in grammes = molar mass in g/mol × number of moles.
Now , we have established that both have the same number of moles. For them to have the same mass, they must have the same molar masses which is not possible.
Hence option A is wrong
Which of these is a physical property?A. Malleable
I think the best answer is B. Even this is the broadest case for the Conservation of matter and the one for Energy, the only way this can be applied is in nuclear rxns.