The answer is Adsorbent
The adsorbent has a high affinity for solvent and the chemical components of the mixture.
Chromatography is a method of separation in which the mixture of substances is introduced into a mobile phase (solvent). The separation occurs as the solvent interacts with an adsorbent(stationary phase).
The extent of separation of the components of the mixture depends on the extent of interaction between the mobile and the stationary phase . This interaction also determines the retention factor (Rf) of the separation.
For a definition of chromatography, see
brainly.com/question/19334271
Answer:
universal law of gravitation
Explanation:
probably none becuase it going staright unless its going down a hill
Answer:
The pressure changes from 2.13 atm to 1.80 atm.
Explanation:
Given data:
Initial pressure = ?
Final pressure = 1.80 atm
Initial temperature = 86.0°C (86.0 + 273 = 359 K)
Final temperature = 30.0°C (30+273 =303 K)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
P₁ = P₂T₁ /T₂
P₁ = 1.80 atm × 359 K / 303 K
P₁ = 646.2 atm. K /303 K
P₁ = 2.13 atm
The pressure changes from 2.13 atm to 1.80 atm.
Answer:
the partial pressure of Xe is 452.4 mmHg
Explanation:
Dalton's law of partial pressures says that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.
The partial pressures can be calculated with the molar fraction of the gas, in this case, Xe.
Molar fraction of Xe is calculated as follows:


Then, 0.29 is the molar fraction of Xe in the mixture of gases given.
To know the parcial pressure of Xe, we have to multiply the molar fraction by the total pressure:
Partial Pressure of Xe=1560mmHg*0.29
Partial Pressure of Xe=452.4mmHg