Answer: 66.2 g
Explanation:
1) The ratio of Al in the molecule is 1 mol to 1 mol .
2) The mass of 1 mol of molecules of Al (CH2H3O2)3 is the molar mass of the compound.
3) You calculate the molar mass of the compound using the atomic masses of each atom, in this way:
Al: 27 g/mol
C: 2 * 3 * 12 g/mol = 72 g/mol
H: 3 * 3 * 1 g/mol = 9 g/mol
O: 2 * 3 * 16 g/mol = 96 g/mol
Molar mass = 27 g/mol + 72 g/mol + 9 g/mol + 96 g/mol = 204 g/mol
4) Set a proportion:
27 g/mol x
-------------------- = ----------
204 g/mol 500 g
5) Solve for x:
x = 500 g * 27 g/mol / 204 g/mol = 66.2 g
Answer:
<h3>The answer is 3.44 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 17.2 g
volume = 5 cm³
We have

We have the final answer as
<h3>3.44 g/cm³</h3>
Hope this helps you
Radon is <span>not a source of air pollution related to human activities</span>
Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Answer: because they take a lot of tie to form