Answer:
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Explanation:
Given:
Mass M1 = 26 kg
Mass M2 = 5.1 kg
Distance r = 0.19 m
Find:
Gravitational force of attraction G(f)
Computation:
Gravitational force of attraction G(f) = G(m1)(m2)/r²
Gravitational force of attraction G(f) = [6.67 x 10⁻¹¹](26)(5.1)/(0.19)²
Gravitational force of attraction G(f) = 8.84 x 10⁻⁹ / 0.0361
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Answer:
option D
Explanation:
Increasing the temperature increases the yield of ammonia and speeds up the reaction as chemical reaction is affected by temperature.
The density of Ca will be between that of Mg and Sr
Explanation:
Ca, Mg and Sr are group II elements. They are called alkali earth metals. The correct order of the elements in this group are: Be, Mg, Ca, Sr, Ba and Ra.
Density is an intensive property of matter which describes the amount of matter(mass) per volume of a substance.
- Density varies proportionally with mass. The higher the mass, the higher its density.
- On the periodic table, atomic mass which the number of protons and neutrons in the nucleus of an atom increases down the group.
- This implies a progradation in the value of density down the group. Therefore one expects that the value of density of Ca will fall between that of Mg and Sr. It cannot be more than 2.6g/cm³ nor less than 1.74g/cm³.
Learn more:
density brainly.com/question/2658982
mass number brainly.com/question/2597088
#learnwithBrainly
Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we identify the limiting reactant by computing the available moles of ethane and the moles of ethane consumed by 60.0 grams of oxygen:

Thus, we notice there are less available moles, for that reason, the ethane is the limiting reactant. Finally, we can compute the produced moles of water by:

Best regards.