Charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 years.
<h3>What is a radioactive isotope?</h3>
A radioactive isotope is an element in nature that emit radioactivity in a given period of time (e.g., the half-life for C14 is equal to 5,730 years).
Radioactive dating is a technique to measure the age of an element by measuring its radioactive activity.
In conclusion, charcoal with a carbon-14 activity of 0.60 compared to new wood has less than 5,730 yr.
Learn more about radioactive dating here:
brainly.com/question/8831242
#SPJ1
Taking into account the reaction stoichiometry, 2 moles of CaO are required to react with 2 moles of Ca(OH)₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CaO + H₂O → Ca(OH)₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CaO: 1 mole
- H₂O: 1 mole
- Ca(OH)₂: 1 mole
<h3>Moles of CaO required</h3>
The following rule of three can be applied: If by stoichiometric reaction 1 mole of Ca(OH)₂ is produced by 1 mole of CaO, 2 moles of Ca(OH)₂ are produced by how many moles of CaO?

moles of CaO= 2 moles
Finally, 2 moles of CaO are required to react with 2 moles of Ca(OH)₂.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
Bases- soap, baking soda
Acids- oranges,lemons
idk
Answer:
Mass of water = 73.08 g
Explanation:
Given data:
Mass of hydrogen = 35 g
Mass of oxygen = 65 g
Mass of water = ?
Solution:
First of all we will write the balanced chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass/ molar mass
Number of moles of hydrogen = 35 g/ 2 g/mol
Number of moles of hydrogen = 17.5 mol
Number of moles of oxygen = 65 g / 32 g/mol
Number of moles of oxygen = 2.03 moles
Now we compare the moles of water with moles hydrogen and oxygen.
H₂ : H₂O
2 : 2
17.5 : 17.5
O₂ : H₂O
1 : 2
2.03 : 2× 2.03 =4.06 mol
Number of moles of water produced by oxygen are less so oxygen is limitting reactant.
Mass of water:
Mass of water = number of moles × molar mass
Mass of water = 4.06 mol × 18 g/mol
Mass of water = 73.08 g
Answer:
mass = 1.8x10⁻³ kg; number of moles = 4.1x10⁻⁵ kmol; specific volume = 0.55 m³/kg; molar specific volume = 24.4 m³/kmol
Explanation:
By the Avogadro's number, 1 mol of the matter has 6.02x10²³ molecules, thus, the number of moles (n) is the number of molecules presented divided by Avogadro's number:
n = 2.5x10²²/6.02x10²³
n = 0.041 mol
n = 4.1x10⁻⁵ kmol
The molar mass of CO₂ is 44 g/mol (12 g/mol of C + 2*16g/mol of O), and the mass is the number of moles multiplied by the molar mass:
m = 0.041 mol * 44 g/mol
m = 1.804 g
m = 1.8x10⁻³ kg
The specific volume (v) is the volume (1L = 0.001 m³) divided by the mass, and it represents how much volume is presented in each part of the mass:
v = 0.001/1.8x10⁻³
v = 0.55 m³/kg
The molar specific volume (nv) is the volume divided by the number of moles, and it represents how much volume is presented in each part of the mol:
nv = 0.001/4.1x10⁻⁵
nv = 24.4 m³/kmol