1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
8

A 48.9 g piece of aluminum is dropped in a graduated cylinder partially filled with water. The original volume of water in the c

ylinder was 41.8 mL. The water rose to 54.4 mL when the aluminum was dropped in. What is the density of the aluminum?
Chemistry
1 answer:
Otrada [13]3 years ago
5 0

Answer:

3.88g/mL

Explanation:

Density could be understood as the mass of a compound when it occupies 1mL.

To find the mass in 1mL we need to determine the volume that the piece occupies:

Based on Archimedes' principle, the volume of water displaced is equal to volume of the aluminium piece, that is:

54.4mL - 41.8mL = 12.6mL

As the piece has as mass 48.9g, the density is:

48.9g / 12.6mL =

<h3>3.88g/mL</h3>
You might be interested in
During photosynthesis, what gas do plants release
ELEN [110]
During photosynthesis, what gas do plants release - oxygen
5 0
2 years ago
Calculate the amount in grams of Na2CO3 needed in a reaction with HCl to produce 120g NaCl?
klemol [59]
The balanced chemical reaction is written as :

Na2CO3<span> + 2HCl === 2NaCl + H2O + CO2
</span>
We are given the amount of NaCl to be produced from the reaction. This will be the starting point for the calculations. We do as follows:

120 g NaCl ( 1 mol / 58.44 g) ( 1 mol Na2CO3 / 2 mol NaCl)( 105.99 g / 1 mol ) = 1108.82 g Na2CO3 needed
8 0
3 years ago
When are reactions always spontaneous?
Reika [66]
when ∆G is negative....
5 0
3 years ago
The Element rhenium has two naturally occurring isotopes, 185 Re and 187 Re, with an average atomic mass of 186.207 amu. Rhenium
BigorU [14]
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. In this case, the equation becomes 186.207=187*0.626+185*x where x is the percent abundance of 185. The answer is 0.374 or 37.4%. This can also be obtained by 100%-62.6%= 37.4%. 
8 0
3 years ago
The following data were collected for the rate of disappearance of NO in the reaction 2NO(g)+O2(g)→2NO2(g)::
Anit [1.1K]

Answer:

a) The rate law is: v = k[NO]² [O₂]

b) The units are: M⁻² s⁻¹

c) The average value of the constant is: 7.11 x 10³ M⁻² s⁻¹

d) The rate of disappearance of NO is 0.8 M/s

e) The rate of disappearance of O₂ is 0.4 M/s

Explanation:

The experimental rates obtained can be expressed as follows:

v1 = k ([NO]₁)ᵃ ([O₂]₁)ᵇ = 1.41 x 10⁻² M/s

v2 = k ([NO]₂)ᵃ ([O₂]₂)ᵇ = 5.64 x 10⁻² M/s

v3 = k ([NO]₃)ᵃ ([O₂]₃)ᵇ = 1.13 x 10⁻¹ M/s

where:

k = rate constant

[NO]₁ = concentration of NO in experiment 1

[NO]₂ = concentration of NO in experiment 2

[NO]₃ = concentration of NO in experiment 3

[O₂]₁ = concentration of O₂ in experiment 1

[O₂]₂ = concentration of O₂ in experiment 2

[O₂]₃ = concentration of O₂ in experiment 3

a and b = order of the reaction for each reactive respectively.

We can see these equivalences:

[NO]₂ = 2[NO]₁

[O₂]₂ = [O₂]₁

[NO]₃ = [NO]₂

[O₂]₃ = 2[O₂]₂

So, v2 can be written in terms of the concentrations used in experiment 1 replacing [NO]₂ for 2[NO]₁ and [O₂]₂ by [O₂]₁ :

v2 = k (2 [NO]₁)ᵃ ([O₂]₁)ᵇ

If we rationalize v2/v1, we will have:

v2/v1 = k *2ᵃ * ([NO]₁)ᵃ * ([O₂]₁)ᵇ / k * ([NO]₁)ᵃ * ([O₂]₁)ᵇ (the exponent "a" has been distributed)

v2/v1 = 2ᵃ

ln(v2/v1) = a ln2

ln(v2/v1) / ln 2 = a

a = 2

(Please review the logarithmic properties if neccesary)

In the same way, we can find b using the data from experiment 2 and 3 and writting v3 in terms of the concentrations used in experiment 2:

v3/v2 = k ([NO]₂)² * 2ᵇ * ([O₂]₁)ᵇ / k * ([NO]₂)² * ([O₂]₂)ᵇ

v3/v2 = 2ᵇ

ln(v3/v2) = b ln 2

ln(v3/v2) / ln 2 = b

b = 1

Then, the rate law for the reaction is:

<u>v = k[NO]² [O₂]</u>

Since the unit of v is M/s and the product of the concentrations will give a unit of M³, the units of k are:

M/s = k * M³

M/s * M⁻³ = k

<u>M⁻² s⁻¹ = k </u>

To obtain the value of k, we can solve this equation for every experiment:

k = v / [NO]² [O₂]

for experiment 1:

k = 1.41 x 10⁻² M/s / (0.0126 M)² * 0.0125 M = 7.11 x 10³ M⁻² s⁻¹

for experiment 2:

k = 7.11 x 10³ M⁻² s⁻¹

for experiment 3:

k = 7.12 x 10³ M⁻² s⁻¹

The average value of k is then:

(7.11 + 7.11 + 7.12) x 10³ M⁻² s⁻¹ / 3 = <u>7.11 x 10³ M⁻² s⁻¹ </u>

The rate of the reaction when [NO] = 0.0750 M and [O2] =0.0100 M is:

v = k [NO]² [O₂]

The rate of the reaction in terms of the disappearance of NO can be written this way:

v = 1/2(Δ [NO] / Δt) (it is divided by 2 because of the stoichiometric coefficient of NO)

where (Δ [NO] / Δt) is the rate of disappearance of NO.

Then, calculating v with the data provided by the problem:

v = 7.11 x 10³ M⁻² s⁻¹ * (0.0750M)² * 0.0100M = 0.4 M/s

Then, the rate of disappearance of NO will be:

2v = Δ [NO] / Δt = <u>0.8 M/s</u>

The rate of disappearance of O₂ has to be half the rate of disappearance of NO because two moles of NO react with one of O₂. Then Δ [O₂] / Δt = <u>0.4 M/s</u>

With calculations:

v = Δ [O₂] / Δt = 0.4 M/s (since the stoichiometric coefficient is 1, the rate of disappearance of O₂ equals the rate of the reaction).

3 0
3 years ago
Other questions:
  • Resistance is caused by _________________in a current bumping into electrons and ions in the matter through which the current is
    11·1 answer
  • Suppose that you place exactly 100 bacteria into a flask containing nutrients for the bacteria and that you find the following d
    9·1 answer
  • CaCl2 can be melted to produce calcium metal and give off chlorine gas. The equation for this is CaCl2(l) Ca(s) + Cl2(g). If 277
    14·2 answers
  • What do scientist use to measure the mass of a substance
    12·1 answer
  • Balance each of the following redox reactions occurring in basic solution
    12·1 answer
  • Which statements are correct about Avogadro’s constant?
    13·1 answer
  • What is the oxidation number of carbon in the compound carbon dioxide, CO2?
    10·1 answer
  • A 283.3-g sample of X2(g) has a volume of 30 L at 3.2 atm and 27 'C. What is element X?
    12·1 answer
  • What is a non example of tendon?
    10·1 answer
  • 4. The compound iron sulfide can be formed by
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!