1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nataly862011 [7]
3 years ago
9

A solenoid coil with 22 turns of wire is wound tightly around another coil with 340 turns. The inner solenoid is 25.0 cm long an

d has a diameter of 2.00 cm. At a certain time, the current in the inner solenoid is 0.100 AA and is increasing at a rate of 1700 A/s.
For this time, calculate:
(a) the average magnetic flux through each turn of the inner solenoid;
(b) the mutual inductance of the two solenoids;
(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.
Physics
2 answers:
LUCKY_DIMON [66]3 years ago
7 0

Answer:

a) 1.34*10^-8 W

b) 1.18*10^-5 H

c) 20mV

Explanation:

a) To find the average magnetic flux trough the inner solenoid you the following formula:

\Phi_B=BA=\mu_oNIA

mu_o: magnetic permeability of vacuum = 4pi*10^-7 T/A

N: turns of the solenoid = 340

I: current of the inner solenoid = 0.100A

A: area of the inner solenoid = pi*r^2

r: radius of the inner solenoid = 2.00cm/2=1.00cm=10^-2m

You calculate the area and then replace the values of N, I, mu_o and A to find the magnetic flux:

A=\pi(10^{-2}m)^2=3.141510^{-4}m^2\\\Phi_B=(4\pi*10^{-7}T/A)(340)(0.100A)(3.1415*10^{-4}m^2)=1.34*10^{-8}W\\

the magnetic flux is 1.34*10^{-8}W

b) the mutual inductance is given by:

M=\mu_o N_1 N_2 \frac{A_2}{l}

N1: turns of the outer solenoid = 22

N2: turns of the inner solenoid

A_2: area of the inner solenoid

l: length of the solenoids = 25.0cm=0.25m

by replacing all these values you obtain:

M=(4\pi*10^{-7}T/A)(340)(22)\frac{3.14*10^{-4}m^2}{0.25m}=1.18*10^{-5}H

the mutual inductance is 1.18*10^{-5}H

c) the emf induced can be computed by using the mutual inductance and the change in the current of the inner solenoid:

\epsilon_1=M\frac{dI_2}{dt}

by replacing you obtain:

\epsilon_1=(1.18*10^{-5}H)(1700A/s)=0.02V=20mV

the emf is 20mV

torisob [31]3 years ago
5 0

Answer:

Φ = 5.27*10^-8 Wb

Mi = Mo = 1.16*10^-5 H

emf = - 0.0197 V      

Explanation:

Given:-

- The number of turns of inner solenoid, Ni = 340 turns

- The number of turns of outer solenoid, No = 22 turns

- The length of the inner solenoid, Li = 25.0 cm

- The diameter of inner solenoid, di = 2.00 cm

- The current in the Inner solenoid, I = 0.10 A

- The rate of change of current, dI / dt = 1700 A/s

Find:-

(a) the average magnetic flux through each turn of the inner solenoid;

(b) the mutual inductance of the two solenoids;

(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.

Solution:-

- At the instant given the magnetic field at the center of the inner solenoid, Bi is given by:

                          Bi = u_o*\frac{N_i}{L_i}*I

Where, uo = 4π * 10^-7 T. m/A  

                          Bi = 4\pi *10^-^7*\frac{340}{0.25}*0.1 \\\\Bi = 0.00017 T

- So the flux through each coil of the inner solenoid is:

                          Φ = Bi*A

- Where A : The area of the circular region of wounded coil:

                          A = π*di^2 / 4

                          A = π*0.02^2 / 4

                          A = 0.00031

- Then the flux ( Φ ) is:

                          Φ = 0.00017*0.00031

                          Φ = 5.27*10^-8 Wb

- Both coils are tightly wounded on each other then the magnetic flux ( Φ ) through each turn of both solenoids is the same. The mutual inductance ( M ) of both will be same can be determined now:

                          Mi = Mo = No*Φ / I

                          Mi = Mo = 22*5.27*10^-8 / 0.1

                          Mi = Mo = 1.16*10^-5 H

- The induced emf in the outer coil due to rate of change of current in the inner coil ( dI / dt ) is given by:

                          emf = -M*dI/dt

                          emf = - 1.16*10^-5 * 1700

                          emf = - 0.0197 V                            

You might be interested in
7) Which statement below best describes the motion of the cart under the conditions shown in the image below?
arlik [135]
The cart is going left is your answer
4 0
2 years ago
I NEED HELP PLEASE, THANKS! :)
Zina [86]

Answer:

charge C = greatest net force

charge B = the smallest net force

ratio  = 9 : 1

Explanation:

we know that in Electrostatic Forces, when 2 charges are at same sign then they repel each other and if they are different signed charges then they attract each other

so as per Coulomb's formula of Electrostatic Forces

F = \frac{k\ q_1\ q_2}{r^2}     .....................1

and here k is 9 × 10^9 N.m²/c² and we consider each charge at distance d

so two charge force at A to B is

F1 = \frac{k\ q^2}{d^2}

and force between charges at A to C, at 2d distance

F1 = \frac{k\ q^2}{(2d)^2}  =  \frac{k\ q^2}{4d^2}

force between charges at A to D,  3d distance

F1 = \frac{k\ q^2}{(3d)^2}  = \frac{k\ q^2}{9d^2}  

so

Charge a It receives force to the left from b and c and to the right from d

so at a will be

F(a)  = -F1 - F2 + F3             ....................2

put here value

F(a) = -\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

solve it

F(a) = \frac{k\ q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})  

F(a) = -\frac{41}{36}\ F1   = 1.13 F1  

and

Charge b It  receives force to the right from a and d and to the left from c

F(b) = F1 - F1 + F2            ....................3

F(b)  =  \frac{k\ q^2}{d^2}-\frac{k\ q^2}{d^2}+\frac{k\ q^2}{4d^2}    

F(b)  = \frac{1}{4} \ F1    =  0.25 F1

and

Charge c It receives forces to the right from all charges.

F(c) = F2 + F 1 + F 1      ....................4

F(c) = \frac{k\ q^2}{4d^2}+\frac{k\ q^2}{d^2}+\frac{k\ q^2}{d^2}      

F(c) =  \frac{9}{4} \ F1   = 2.25 F1

and

Charge d It receives forces to the left from all charges

F(d) = - F3 - F2 -F 1      ....................5

F(d) = -\frac{k\ q^2}{9d^2}-\frac{k\ q^2}{4d^2}-\frac{k\ q^2}{d^2}  

so

F(d) = -\frac{49}{36} \ F1    = 1.36 F1

and

now we get here ratio of the greatest to the smallest net force that is

ratio = \frac{2.25}{0.25}

 ratio  = 9 : 1

5 0
3 years ago
An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary
Talja [164]

Answer:

A) 5.2 x 10³ N

B) 8.8 x 10³ N

Explanation:

Part A)

F_{g} = weight of the craft in downward direction = tension force in the cable when stationary = 7000 N

T = Tension force in upward direction

F_{d} = Drag force in upward direction = 1800 N

Force equation for the motion of craft is given as

F_{g} - F_{d} - T = 0

7000 - 1800 - T = 0

T = 5200 N

T = 5.2 x 10³ N

Part B)

F_{g} = weight of the craft in downward direction = tension force in the cable when stationary = 7000 N

T = Tension force in upward direction

F_{d} = Drag force in downward direction = 1800 N

Force equation for the motion of craft is given as

T  - F_{g} - F_{d} = 0

T - 7000 - 1800  = 0

T = 8800 N

T = 8.8 x 10³ N

4 0
3 years ago
Answer fast please !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
iogann1982 [59]
I believe it's the the third one. :)
<span />
8 0
3 years ago
Read 2 more answers
Question 2 The gravitational force between two objects with identical masses that are 10 m apart, is 2.67 x10-10 N. To the neare
xxMikexx [17]

Answer  888990,0 kg

Explanation:

3 0
3 years ago
Other questions:
  • The tonga trench in the pacific ocean is 36,000 feet deep. assuming that sea water has an average density of 1.04 g/cm3, calcula
    5·1 answer
  • Which of the following is a mixture?<br><br> A. steel<br> B. water<br> c. oxygen<br> D. gold
    14·1 answer
  • What are the Characteristics of theta waves
    8·1 answer
  • A car slams on its brakes, coming to a complete stop in 4.0 s. The car was traveling south at 60.0 mph. Calculate the accelerati
    14·2 answers
  • You heat a mug of water to make hot chocolate. Which statement best
    5·1 answer
  • The energy an object has by virtue of its position is kinetic energy.<br> True<br> False
    10·1 answer
  • Darcy suffers from farsightedness equally severely in both eyes. The focal length of either of Darcy's eyes is 19.8 mm in its mo
    5·1 answer
  • Erosion and Weathering can cause changes in earths surface but how does erosion alone changes the earth surface.
    5·1 answer
  • An apple in a tree has a mass of 0.21 kg. If it is 7.2 meters above the ground, how much potential energy does it have?
    7·1 answer
  • Physics 4
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!