1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nataly862011 [7]
3 years ago
9

A solenoid coil with 22 turns of wire is wound tightly around another coil with 340 turns. The inner solenoid is 25.0 cm long an

d has a diameter of 2.00 cm. At a certain time, the current in the inner solenoid is 0.100 AA and is increasing at a rate of 1700 A/s.
For this time, calculate:
(a) the average magnetic flux through each turn of the inner solenoid;
(b) the mutual inductance of the two solenoids;
(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.
Physics
2 answers:
LUCKY_DIMON [66]3 years ago
7 0

Answer:

a) 1.34*10^-8 W

b) 1.18*10^-5 H

c) 20mV

Explanation:

a) To find the average magnetic flux trough the inner solenoid you the following formula:

\Phi_B=BA=\mu_oNIA

mu_o: magnetic permeability of vacuum = 4pi*10^-7 T/A

N: turns of the solenoid = 340

I: current of the inner solenoid = 0.100A

A: area of the inner solenoid = pi*r^2

r: radius of the inner solenoid = 2.00cm/2=1.00cm=10^-2m

You calculate the area and then replace the values of N, I, mu_o and A to find the magnetic flux:

A=\pi(10^{-2}m)^2=3.141510^{-4}m^2\\\Phi_B=(4\pi*10^{-7}T/A)(340)(0.100A)(3.1415*10^{-4}m^2)=1.34*10^{-8}W\\

the magnetic flux is 1.34*10^{-8}W

b) the mutual inductance is given by:

M=\mu_o N_1 N_2 \frac{A_2}{l}

N1: turns of the outer solenoid = 22

N2: turns of the inner solenoid

A_2: area of the inner solenoid

l: length of the solenoids = 25.0cm=0.25m

by replacing all these values you obtain:

M=(4\pi*10^{-7}T/A)(340)(22)\frac{3.14*10^{-4}m^2}{0.25m}=1.18*10^{-5}H

the mutual inductance is 1.18*10^{-5}H

c) the emf induced can be computed by using the mutual inductance and the change in the current of the inner solenoid:

\epsilon_1=M\frac{dI_2}{dt}

by replacing you obtain:

\epsilon_1=(1.18*10^{-5}H)(1700A/s)=0.02V=20mV

the emf is 20mV

torisob [31]3 years ago
5 0

Answer:

Φ = 5.27*10^-8 Wb

Mi = Mo = 1.16*10^-5 H

emf = - 0.0197 V      

Explanation:

Given:-

- The number of turns of inner solenoid, Ni = 340 turns

- The number of turns of outer solenoid, No = 22 turns

- The length of the inner solenoid, Li = 25.0 cm

- The diameter of inner solenoid, di = 2.00 cm

- The current in the Inner solenoid, I = 0.10 A

- The rate of change of current, dI / dt = 1700 A/s

Find:-

(a) the average magnetic flux through each turn of the inner solenoid;

(b) the mutual inductance of the two solenoids;

(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.

Solution:-

- At the instant given the magnetic field at the center of the inner solenoid, Bi is given by:

                          Bi = u_o*\frac{N_i}{L_i}*I

Where, uo = 4π * 10^-7 T. m/A  

                          Bi = 4\pi *10^-^7*\frac{340}{0.25}*0.1 \\\\Bi = 0.00017 T

- So the flux through each coil of the inner solenoid is:

                          Φ = Bi*A

- Where A : The area of the circular region of wounded coil:

                          A = π*di^2 / 4

                          A = π*0.02^2 / 4

                          A = 0.00031

- Then the flux ( Φ ) is:

                          Φ = 0.00017*0.00031

                          Φ = 5.27*10^-8 Wb

- Both coils are tightly wounded on each other then the magnetic flux ( Φ ) through each turn of both solenoids is the same. The mutual inductance ( M ) of both will be same can be determined now:

                          Mi = Mo = No*Φ / I

                          Mi = Mo = 22*5.27*10^-8 / 0.1

                          Mi = Mo = 1.16*10^-5 H

- The induced emf in the outer coil due to rate of change of current in the inner coil ( dI / dt ) is given by:

                          emf = -M*dI/dt

                          emf = - 1.16*10^-5 * 1700

                          emf = - 0.0197 V                            

You might be interested in
A motorcycle running on gasoline wastes a large amount of energy mainly as A) heat energy and sound energy. B) light energy and
vlada-n [284]

A motorcycle mainly wastes energy as heat <u>energy</u> and <u>sound</u> energy. In the engine, chemical energy is transformed into mechanical energy. However, the engine is inefficient and much of the chemical energy is lost as heat energy. Also, some of the energy is transformed to sound energy. This explains why the motorcycle is noisy and has an exhaust pipe.

3 0
3 years ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
3 years ago
A sample of helium has a volume of 12.7 m3. The temperature is raised to 323 K at which time the gas occupies 32.5 m3? Assume pr
jasenka [17]

Answer: The original temperature was

T_{1}=126.51K

Explanation:

Let's put the information in mathematical form:

V_{1}=12.7m^{3}

T_{1}=?

V_{2}=32.5m^{3}

T_{2}=323K

P_{1}=P_{2}=3atm

If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

PV=nRT

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)

From this, taking R=0.08205746\frac{atm.l}{mol.K},  we have:

n=\frac{P_{2}V_{2}}{RT_{2}}

⇒n=3.67mol

Now:

T_{1}=\frac{P_{1}V_{1}}{nR}

⇒T_{1}=126.51K

7 0
3 years ago
Read 2 more answers
the idling engines of a landing turbojet produce forward thrust when operating in a normal manner, but they can produce reverse
Finger [1]

Forward thrust has positive values and reverse thrust has negative values.

Thrust is a sudden push or pull in a certain direction.

a)

Flight speed u = 150 km/h

1 km/h = \frac{1}{3.6} km/s

therefore, 150 km/h =  41.67 km / s

The thrust force represents the horizontal or x-component of momentum equation:

T = m_{exhaust} * U_{exhaust} - U_{flight}

T = 50 * (150 - 41.67)

T = 5416.67 N

Therefore, the value of forward thrust is 5416.67 N.

b)

Now the exhaust velocity is now vertical due to reverse thrust application, then it has a zero horizontal component,

thus thrust equation is:

T = m_{exhaust} * U_{exhaust} - U_{flight}

T = 50 * (0 - 41.67)

T = -2083.5 N

Therefore, the thrust force T is -2083.5 N in the reverse direction.

c)

Now the exhaust velocity and flight velocity is zero, then it has a zero horizontal component, thus thrust is also zero becauseU_{exhaust} = U_{flight} = 0\\

T = 0

Therefore, there is no difference in two velocities in x direction.

The given question is incomplete, the complete question is,

"The idling engines of a landing turbojet produce forward thrust when operating in a normal manner, but they can produce reverse thrust if the jet is properly deflected. Suppose that while the aircraft rolls down the runway at 150 km/h the idling engine consumes air at 50 kg/s and produces an exhaust velocity of 150 m/s.

a. What is the forward thrust of this engine?

b. What are the magnitude and direction (i.e., forward or reverse) if the exhaust is deflected 90 degree without affecting the mass flow?

c. What are the magnitude and direction of the thrust (forward or reverse) after the plane has come to a stop, with 90 degree exhaust deflection and an airflow of 40 kg/s?"

To know more about thrust,

brainly.com/question/14552836

#SPJ1

3 0
1 year ago
Write a general scientific question that you will answer by doing this experiment.
il63 [147K]

Answer:

How does newtons first two laws of motion apply to the toy car?

Explanation:

7 0
3 years ago
Other questions:
  • A major-league pitcher can throw a ball in excess of 40.1 m/s. If a ball is thrown horizontally at this speed, how much will it
    14·1 answer
  • How many grams of nitrogen gas are needed to produce 34 g of ammonia
    9·1 answer
  • Based on its orbit, which planet behaves the least like the others?
    14·1 answer
  • Explain how the message is transmitted from the receiving neuron’s dendrites down the axon all the way to the axon terminal (ele
    10·1 answer
  • Select the correct answer.
    6·1 answer
  • In the two-stage cooling method, what is the maximum amount of time allowed to cool food from 135 degrees F or more to 70 degree
    15·1 answer
  • 2)
    7·1 answer
  • Hi..I'm new here..Can some one help mi with my school work plz​
    14·1 answer
  • What is the potential energy of an object 20 m in the air with a<br> mass of 600 kg?
    9·1 answer
  • Nikki has a momentum of 45 Kilogram meters per second and a mass of 30 Kilograms. What is her velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!