Three peaks corresponding to Cl+2 will be recorded. The peaks are for isotope 35, both 35 and 37 and for isotope 37. Mass spectrometer has the ability to detect and separate isotopes, even those differing by a single atomic mass unit. When chlorine isotopes are analysed by mass spectrometer, either peak M or M+2 can be obtained. The intensity ratio in the isotope pattern depends on the natural abundance of the isotopes.
Answer:
Brain
Explanation:
It tells the other organelles how to do things
Answer:
Plants consume carbon through transpiration
Explanation:
In transpiration, plants lose water vapor through the stomata in their leaves. No carbon is involved in transpiration, which has an outbound direction. Nothing can be consumed through the stomata when vapor is going out of the plant. It´s like trying to get in through the exit.
Answer: -
The experiment Niven is doing is burning of Mg.
The first step would be finding the molar mass of MgO
Atomic mass of Mg = 24 g
Atomic mass of Oxygen = 16 g
Molar mass of MgO = 24 x 1 + 16 x 1 = 40 g
The balanced chemical equation for this reaction is
2 Mg + O2 -- > 2MgO
From the balanced equation we see that
2 Mg gives 2 MgO
2 x24 g of Mg O gives 2 x 40 g of MgO.
28g of MgO gives

= 46.66 g of MgO.
Answer:
1.00 M
Explanation:
Sn^2+ reacts with KMNO4 as follows;
5Sn^2+(aq) + 2MnO4^-(aq) + 16H^+(aq) ----> 5Sn^4+(aq) + 2Mn^+(aq) + 8H2O(l)
The number of moles of MnO4^- reacted = 42.1/1000 L × 0.145 mol/L
= 0.0061 moles
If 5 moles of Sn^2+ reacts with 2 moles of MnO4^-
x moles of Sn^2+ reacts with 0.0061 moles of MnO4^-
x= 5 × 0.0061/2
x= 0.015 moles
Since the volume of the Sn^2+ solution is 15.00mL or 0.015 L
number of moles = concentration × volume
Concentration = number of moles/volume
Concentration= 0.015 moles/0.015 L
Concentration = 1 M